Files
AgentCoord/backend/AgentCoord/LLMAPI/LLMAPI.py

400 lines
14 KiB
Python

import asyncio
import httpx
from openai import OpenAI, AsyncOpenAI, max_retries
import yaml
from termcolor import colored
import os
# Helper function to avoid circular import
def print_colored(text, text_color="green", background="on_white"):
print(colored(text, text_color, background))
# load config (apikey, apibase, model)
yaml_file = os.path.join(os.getcwd(), "config", "config.yaml")
try:
with open(yaml_file, "r", encoding="utf-8") as file:
yaml_data = yaml.safe_load(file)
except Exception:
yaml_data = {}
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE") or yaml_data.get(
"OPENAI_API_BASE", "https://api.openai.com"
)
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") or yaml_data.get(
"OPENAI_API_KEY", ""
)
OPENAI_API_MODEL = os.getenv("OPENAI_API_MODEL") or yaml_data.get(
"OPENAI_API_MODEL", ""
)
# Initialize OpenAI clients
client = OpenAI(api_key=OPENAI_API_KEY, base_url=OPENAI_API_BASE)
async_client = AsyncOpenAI(api_key=OPENAI_API_KEY, base_url=OPENAI_API_BASE)
MODEL: str = os.getenv("OPENAI_API_MODEL") or yaml_data.get(
"OPENAI_API_MODEL", "gpt-4-turbo-preview"
)
FAST_DESIGN_MODE: bool = os.getenv("FAST_DESIGN_MODE")
if FAST_DESIGN_MODE is None:
FAST_DESIGN_MODE = yaml_data.get("FAST_DESIGN_MODE", False)
else:
FAST_DESIGN_MODE = FAST_DESIGN_MODE.lower() in ["true", "1", "yes"]
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or yaml_data.get("GROQ_API_KEY", "")
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY") or yaml_data.get(
"MISTRAL_API_KEY", ""
)
# for LLM completion
def LLM_Completion(
messages: list[dict], stream: bool = True, useGroq: bool = True,model_config: dict = None
) -> str:
if model_config:
print_colored(f"Using model config: {model_config}", "blue")
return _call_with_custom_config(messages,stream,model_config)
if not useGroq or not FAST_DESIGN_MODE:
force_gpt4 = True
useGroq = False
else:
force_gpt4 = False
useGroq = True
if stream:
try:
loop = asyncio.get_event_loop()
except RuntimeError as ex:
if "There is no current event loop in thread" in str(ex):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
if useGroq:
if force_gpt4:
return loop.run_until_complete(
_achat_completion_json(messages=messages)
)
else:
return loop.run_until_complete(
_achat_completion_stream_groq(messages=messages)
)
else:
return loop.run_until_complete(
_achat_completion_stream(messages=messages)
)
# return asyncio.run(_achat_completion_stream(messages = messages))
else:
return _chat_completion(messages=messages)
def _call_with_custom_config(messages: list[dict], stream: bool, model_config: dict) ->str:
"使用自定义配置调用API"
api_url = model_config.get("apiUrl", OPENAI_API_BASE)
api_key = model_config.get("apiKey", OPENAI_API_KEY)
api_model = model_config.get("apiModel", OPENAI_API_MODEL)
temp_client = OpenAI(api_key=api_key, base_url=api_url)
temp_async_client = AsyncOpenAI(api_key=api_key, base_url=api_url)
try:
if stream:
try:
loop = asyncio.get_event_loop()
except RuntimeError as ex:
if "There is no current event loop in thread" in str(ex):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(
_achat_completion_stream_custom(messages=messages, temp_async_client=temp_async_client, api_model=api_model)
)
else:
response = temp_client.chat.completions.create(
messages=messages,
model=api_model,
temperature=0.3,
max_tokens=4096,
timeout=180
)
# 检查响应是否有效
if not response.choices or len(response.choices) == 0:
raise Exception(f"API returned empty response for model {api_model}")
if not response.choices[0] or not response.choices[0].message:
raise Exception(f"API returned invalid response format for model {api_model}")
full_reply_content = response.choices[0].message.content
if full_reply_content is None:
raise Exception(f"API returned None content for model {api_model}")
print(colored(full_reply_content, "blue", "on_white"), end="")
return full_reply_content
except Exception as e:
print_colored(f"Custom API error for model {api_model} :{str(e)}","red")
raise
async def _achat_completion_stream_custom(messages:list[dict], temp_async_client, api_model: str ) -> str:
max_retries=3
for attempt in range(max_retries):
try:
response = await temp_async_client.chat.completions.create(
messages=messages,
model=api_model,
temperature=0.3,
max_tokens=4096,
stream=True,
timeout=180
)
collected_chunks = []
collected_messages = []
async for chunk in response:
collected_chunks.append(chunk)
choices = chunk.choices
if len(choices) > 0 and choices[0] is not None:
chunk_message = choices[0].delta
if chunk_message is not None:
collected_messages.append(chunk_message)
if chunk_message.content:
print(colored(chunk_message.content, "blue", "on_white"), end="")
print()
full_reply_content = "".join(
[m.content or "" for m in collected_messages if m is not None]
)
# 检查最终结果是否为空
if not full_reply_content or full_reply_content.strip() == "":
raise Exception(f"Stream API returned empty content for model {api_model}")
return full_reply_content
except httpx.RemoteProtocolError as e:
if attempt < max_retries - 1:
wait_time = (attempt + 1) *2
print_colored(f"⚠️ Stream connection interrupted (attempt {attempt+1}/{max_retries}). Retrying in {wait_time}s...", text_color="yellow")
await asyncio.sleep(wait_time)
continue
except Exception as e:
print_colored(f"Custom API stream error for model {api_model} :{str(e)}","red")
raise
async def _achat_completion_stream_groq(messages: list[dict]) -> str:
from groq import AsyncGroq
groq_client = AsyncGroq(api_key=GROQ_API_KEY)
max_attempts = 5
for attempt in range(max_attempts):
print("Attempt to use Groq (Fase Design Mode):")
try:
response = await groq_client.chat.completions.create(
messages=messages,
# model='gemma-7b-it',
model="mixtral-8x7b-32768",
# model='llama2-70b-4096',
temperature=0.3,
response_format={"type": "json_object"},
stream=False,
)
break
except Exception:
if attempt < max_attempts - 1: # i is zero indexed
continue
else:
raise Exception("failed")
# 检查响应是否有效
if not response.choices or len(response.choices) == 0:
raise Exception("Groq API returned empty response")
if not response.choices[0] or not response.choices[0].message:
raise Exception("Groq API returned invalid response format")
full_reply_content = response.choices[0].message.content
if full_reply_content is None:
raise Exception("Groq API returned None content")
print(colored(full_reply_content, "blue", "on_white"), end="")
print()
return full_reply_content
async def _achat_completion_stream_mixtral(messages: list[dict]) -> str:
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
mistral_client = MistralClient(api_key=MISTRAL_API_KEY)
# client=AsyncGroq(api_key=GROQ_API_KEY)
max_attempts = 5
for attempt in range(max_attempts):
try:
messages[len(messages) - 1]["role"] = "user"
stream = mistral_client.chat(
messages=[
ChatMessage(
role=message["role"], content=message["content"]
)
for message in messages
],
# model = "mistral-small-latest",
model="open-mixtral-8x7b",
)
break # If the operation is successful, break the loop
except Exception:
if attempt < max_attempts - 1: # i is zero indexed
continue
else:
raise Exception("failed")
# 检查响应是否有效
if not stream.choices or len(stream.choices) == 0:
raise Exception("Mistral API returned empty response")
if not stream.choices[0] or not stream.choices[0].message:
raise Exception("Mistral API returned invalid response format")
full_reply_content = stream.choices[0].message.content
if full_reply_content is None:
raise Exception("Mistral API returned None content")
print(colored(full_reply_content, "blue", "on_white"), end="")
print()
return full_reply_content
async def _achat_completion_stream_gpt35(messages: list[dict]) -> str:
response = await async_client.chat.completions.create(
messages=messages,
max_tokens=4096,
temperature=0.3,
timeout=600,
model="gpt-3.5-turbo-16k",
stream=True,
)
# create variables to collect the stream of chunks
collected_chunks = []
collected_messages = []
# iterate through the stream of events
async for chunk in response:
collected_chunks.append(chunk) # save the event response
choices = chunk.choices
if len(choices) > 0 and choices[0] is not None:
chunk_message = choices[0].delta
if chunk_message is not None:
collected_messages.append(chunk_message) # save the message
if chunk_message.content:
print(
colored(chunk_message.content, "blue", "on_white"),
end="",
)
print()
full_reply_content = "".join(
[m.content or "" for m in collected_messages if m is not None]
)
# 检查最终结果是否为空
if not full_reply_content or full_reply_content.strip() == "":
raise Exception("Stream API (gpt-3.5) returned empty content")
return full_reply_content
def _achat_completion_json(messages: list[dict] ) -> str:
max_attempts = 5
for attempt in range(max_attempts):
try:
response = async_client.chat.completions.create(
messages=messages,
max_tokens=4096,
temperature=0.3,
timeout=600,
model=MODEL,
response_format={"type": "json_object"},
)
break
except Exception:
if attempt < max_attempts - 1: # i is zero indexed
continue
else:
raise Exception("failed")
# 检查响应是否有效
if not response.choices or len(response.choices) == 0:
raise Exception("OpenAI API returned empty response")
if not response.choices[0] or not response.choices[0].message:
raise Exception("OpenAI API returned invalid response format")
full_reply_content = response.choices[0].message.content
if full_reply_content is None:
raise Exception("OpenAI API returned None content")
print(colored(full_reply_content, "blue", "on_white"), end="")
print()
return full_reply_content
async def _achat_completion_stream(messages: list[dict]) -> str:
try:
response = await async_client.chat.completions.create(
**_cons_kwargs(messages), stream=True
)
# create variables to collect the stream of chunks
collected_chunks = []
collected_messages = []
# iterate through the stream of events
async for chunk in response:
collected_chunks.append(chunk) # save the event response
choices = chunk.choices
if len(choices) > 0 and choices[0] is not None:
chunk_message = choices[0].delta
if chunk_message is not None:
collected_messages.append(chunk_message) # save the message
if chunk_message.content:
print(
colored(chunk_message.content, "blue", "on_white"),
end="",
)
print()
full_reply_content = "".join(
[m.content or "" for m in collected_messages if m is not None]
)
# 检查最终结果是否为空
if not full_reply_content or full_reply_content.strip() == "":
raise Exception("Stream API returned empty content")
return full_reply_content
except Exception as e:
print_colored(f"OpenAI API error in _achat_completion_stream: {str(e)}", "red")
raise
def _chat_completion(messages: list[dict]) -> str:
try:
rsp = client.chat.completions.create(**_cons_kwargs(messages))
# 检查响应是否有效
if not rsp.choices or len(rsp.choices) == 0:
raise Exception("OpenAI API returned empty response")
if not rsp.choices[0] or not rsp.choices[0].message:
raise Exception("OpenAI API returned invalid response format")
content = rsp.choices[0].message.content
if content is None:
raise Exception("OpenAI API returned None content")
return content
except Exception as e:
print_colored(f"OpenAI API error in _chat_completion: {str(e)}", "red")
raise
def _cons_kwargs(messages: list[dict]) -> dict:
kwargs = {
"messages": messages,
"max_tokens": 2000,
"temperature": 0.3,
"timeout": 600,
}
kwargs_mode = {"model": MODEL}
kwargs.update(kwargs_mode)
return kwargs