added supabase

This commit is contained in:
n4ze3m
2023-04-11 15:19:39 +05:30
parent a3535bb5c5
commit 00e6d71727
13 changed files with 211 additions and 90 deletions

View File

View File

@@ -0,0 +1,79 @@
from models import ChatBody
from bs4 import BeautifulSoup
from langchain.docstore.document import Document as LDocument
from langchain.vectorstores.faiss import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
)
async def chat_extension_handler(body: ChatBody):
try:
soup = BeautifulSoup(body.html, 'lxml')
iframe = soup.find('iframe', id='pageassist-iframe')
if iframe:
iframe.decompose()
div = soup.find('div', id='pageassist-icon')
if div:
div.decompose()
div = soup.find('div', id='__plasmo-loading__')
if div:
div.decompose()
text = soup.get_text()
result = [LDocument(page_content=text, metadata={"source": "test"})]
token_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
doc = token_splitter.split_documents(result)
print(f'Number of documents: {len(doc)}')
vectorstore = FAISS.from_documents(doc, OpenAIEmbeddings())
messages = [
SystemMessagePromptTemplate.from_template("""I want you to act as a webpage that I am having a conversation witu. Your name is "OpenChatX". You will provide me with answers from the given text from webpage. Your answer should be original, concise, accurate, and helpful. You can recommend, translate and can do anything based on the context given. If the answer is not included in the text and you know the answer you can resonpond the answer othwerwise say exactly "I don't know the answer " and stop after that. Never break character. Answer must be in markdown format.
-----------------
{context}
"""),
HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)
chat = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0, model_name="gpt-3.5-turbo"), vectorstore.as_retriever(), return_source_documents=True, qa_prompt=prompt,)
history = [(d["human_message"], d["bot_response"]) for d in body.history]
print(history)
response = chat({
"question": body.user_message,
"chat_history": history
})
answer = response["answer"]
answer = answer[answer.find(":")+1:].strip()
return {
"bot_response": answer,
"human_message": body.user_message,
}
except Exception as e:
print(e)
return {
"bot_response": "Something went wrong please try again later",
"human_message": body.user_message,
}

View File

@@ -0,0 +1,57 @@
from fastapi import HTTPException, Header
from models import UserValidation, SaveChatToApp
from db.supa import SupaService
from bs4 import BeautifulSoup
supabase = SupaService()
async def validate_user_handler(user: UserValidation):
if user.token is None or user.token == "":
raise HTTPException(status_code=400, detail="Token is required")
user = supabase.validate_user(user.token)
data = user.data
if len(data) == 0:
raise HTTPException(status_code=400, detail="Invalid token")
return {
"status": "success",
}
async def save_website_handler(body: SaveChatToApp, x_auth_token):
try:
if x_auth_token is None or x_auth_token == "":
raise HTTPException(status_code=400, detail="Token is required")
user = supabase.validate_user(x_auth_token)
data = user.data
if len(data) == 0:
raise HTTPException(status_code=400, detail="Invalid token")
soup = BeautifulSoup(body.html, 'lxml')
title = soup.title.string if soup.title else "Untitled Page"
icon = soup.find('link', rel='icon').get('href') if soup.find('link', rel='icon') else None
iframe = soup.find('iframe', id='pageassist-iframe')
if iframe:
iframe.decompose()
div = soup.find('div', id='pageassist-icon')
if div:
div.decompose()
div = soup.find('div', id='__plasmo-loading__')
if div:
div.decompose()
text = soup.get_text()
result = supabase.save_webiste(html=text, title=title, icon=icon, url=body.url, user_id=data[0]["id"])
return {
"status": "Success"
}
except Exception as e:
raise HTTPException(status_code=500, detail="Internal server error")