feat: Add text splitting configuration options
This commit is contained in:
parent
1d9d704c76
commit
0af69a3be8
@ -334,6 +334,14 @@
|
||||
"label": "عدد المستندات المسترجعة",
|
||||
"placeholder": "أدخل عدد المستندات المسترجعة",
|
||||
"required": "الرجاء إدخال عدد المستندات المسترجعة"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "الفاصل",
|
||||
"placeholder": "أدخل الفاصل (مثال: \\n\\n)",
|
||||
"required": "الرجاء إدخال الفاصل"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "مقسم النص"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
@ -355,4 +363,5 @@
|
||||
},
|
||||
"chromeAiSettings": {
|
||||
"title": "إعدادات Chrome AI"
|
||||
}}
|
||||
}
|
||||
}
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Antal Hentede Dokumenter",
|
||||
"placeholder": "Indtast Number of Retrieved Documents",
|
||||
"required": "Venligst indtast the number of retrieved documents"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separator",
|
||||
"placeholder": "Indtast Separator (f.eks. \\n\\n)",
|
||||
"required": "Indtast venligst en separator"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Tekst Splitter"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Anzahl der abgerufenen Dokumente",
|
||||
"placeholder": "Anzahl der abgerufenen Dokumente eingeben",
|
||||
"required": "Bitte geben Sie die Anzahl der abgerufenen Dokumente ein"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separator",
|
||||
"placeholder": "Separator eingeben (z.B. \\n\\n)",
|
||||
"required": "Bitte geben Sie einen Separator ein"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Text-Splitter"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -337,6 +337,14 @@
|
||||
"label": "Number of Retrieved Documents",
|
||||
"placeholder": "Enter Number of Retrieved Documents",
|
||||
"required": "Please enter the number of retrieved documents"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separator",
|
||||
"placeholder": "Enter Separator (e.g., \\n\\n)",
|
||||
"required": "Please enter a separator"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Text Splitter"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Número de Documentos Recuperados",
|
||||
"placeholder": "Ingrese el Número de Documentos Recuperados",
|
||||
"required": "Por favor, ingrese el número de documentos recuperados"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separador",
|
||||
"placeholder": "Ingrese el separador (ej., \\n\\n)",
|
||||
"required": "Por favor, ingrese un separador"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Divisor de Texto"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -327,6 +327,14 @@
|
||||
"label": "تعداد اسناد بازیابی شده",
|
||||
"placeholder": "تعداد اسناد بازیابی شده را وارد کنید",
|
||||
"required": "لطفاً تعداد اسناد بازیابی شده را وارد کنید"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "جداکننده",
|
||||
"placeholder": "جداکننده را وارد کنید (مثلاً \\n\\n)",
|
||||
"required": "لطفاً یک جداکننده وارد کنید"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "تقسیمکننده متن"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Nombre de documents récupérés",
|
||||
"placeholder": "Entrez le nombre de documents récupérés",
|
||||
"required": "Veuillez saisir le nombre de documents récupérés"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Séparateur",
|
||||
"placeholder": "Entrez le séparateur (par exemple, \\n\\n)",
|
||||
"required": "Veuillez saisir un séparateur"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Diviseur de texte"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Numero di Documenti Recuperati",
|
||||
"placeholder": "Inserisci il Numero di Documenti Recuperati",
|
||||
"required": "Inserisci il numero di documenti recuperati"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separatore",
|
||||
"placeholder": "Inserisci il Separatore (es. \\n\\n)",
|
||||
"required": "Inserisci un separatore"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Divisore di Testo"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -334,6 +334,14 @@
|
||||
"label": "取得ドキュメント数",
|
||||
"placeholder": "取得ドキュメント数を入力",
|
||||
"required": "取得ドキュメント数を入力してください"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "セパレーター",
|
||||
"placeholder": "セパレーターを入力(例:\\n\\n)",
|
||||
"required": "セパレーターを入力してください"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "テキスト分割方式"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -334,6 +334,14 @@
|
||||
"label": "검색 문서 수",
|
||||
"placeholder": "검색 문서 수 입력",
|
||||
"required": "검색 문서 수를 입력해주세요"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "구분자",
|
||||
"placeholder": "구분자 입력 (예: \\n\\n)",
|
||||
"required": "구분자를 입력해주세요"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "텍스트 분할기"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -334,6 +334,14 @@
|
||||
"label": "വീണ്ടെടുത്ത രേഖകളുടെ എണ്ണം",
|
||||
"placeholder": "വീണ്ടെടുത്ത രേഖകളുടെ എണ്ണം നൽകുക",
|
||||
"required": "ദയവായി വീണ്ടെടുത്ത രേഖകളുടെ എണ്ണം നൽകുക"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "വിഭജന ചിഹ്നം",
|
||||
"placeholder": "വിഭജന ചിഹ്നം നൽകുക (ഉദാ: \\n\\n)",
|
||||
"required": "ദയവായി ഒരു വിഭജന ചിഹ്നം നൽകുക"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "ടെക്സ്റ്റ് സ്പ്ലിറ്റർ"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Antall hentede dokumenter",
|
||||
"placeholder": "Skriv inn antall hentede dokumenter",
|
||||
"required": "Vennligst skriv inn antall hentede dokumenter"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separator",
|
||||
"placeholder": "Skriv inn separator (f.eks. \\n\\n)",
|
||||
"required": "Vennligst skriv inn en separator"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Tekstdeler"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Número de Documentos Recuperados",
|
||||
"placeholder": "Digite o Número de Documentos Recuperados",
|
||||
"required": "Por favor, insira o número de documentos recuperados"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separador",
|
||||
"placeholder": "Digite o Separador (ex: \\n\\n)",
|
||||
"required": "Por favor, insira um separador"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Divisor de Texto"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -333,6 +333,14 @@
|
||||
"label": "Количество извлеченных документов",
|
||||
"placeholder": "Введите количество извлеченных документов",
|
||||
"required": "Пожалуйста, введите количество извлеченных документов"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Разделитель",
|
||||
"placeholder": "Введите разделитель (например, \\n\\n)",
|
||||
"required": "Пожалуйста, введите разделитель"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Разделитель текста"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Antal hämtade dokument",
|
||||
"placeholder": "Ange antal hämtade dokument",
|
||||
"required": "Vänligen ange antal hämtade dokument"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Separator",
|
||||
"placeholder": "Ange separator (t.ex. \\n\\n)",
|
||||
"required": "Vänligen ange en separator"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Textdelare"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -331,6 +331,14 @@
|
||||
"label": "Кількість отриманих документів",
|
||||
"placeholder": "Ввести кількість отриманих документів",
|
||||
"required": "Будь ласка, введіть кількість документів"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "Роздільник",
|
||||
"placeholder": "Введіть роздільник (напр., \\n\\n)",
|
||||
"required": "Будь ласка, введіть роздільник"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "Розділювач тексту"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -336,6 +336,14 @@
|
||||
"label": "检索文档数量",
|
||||
"placeholder": "输入检索文档数量",
|
||||
"required": "请输入检索文档数量"
|
||||
},
|
||||
"splittingSeparator": {
|
||||
"label": "分隔符",
|
||||
"placeholder": "输入分隔符(例如:\\n\\n)",
|
||||
"required": "请输入分隔符"
|
||||
},
|
||||
"splittingStrategy": {
|
||||
"label": "文本分割器"
|
||||
}
|
||||
},
|
||||
"prompt": {
|
||||
|
@ -1,10 +1,12 @@
|
||||
import { useMutation, useQuery, useQueryClient } from "@tanstack/react-query"
|
||||
import { Form, InputNumber, Select, Skeleton } from "antd"
|
||||
import { Form, Input, InputNumber, Select, Skeleton } from "antd"
|
||||
import { SaveButton } from "~/components/Common/SaveButton"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultEmbeddingModelForRag,
|
||||
defaultSplittingStrategy,
|
||||
defaultSsplttingSeparator,
|
||||
getEmbeddingModels,
|
||||
saveForRag
|
||||
} from "~/services/ollama"
|
||||
@ -16,7 +18,8 @@ import { ProviderIcons } from "@/components/Common/ProviderIcon"
|
||||
|
||||
export const RagSettings = () => {
|
||||
const { t } = useTranslation("settings")
|
||||
|
||||
const [form] = Form.useForm()
|
||||
const splittingStrategy = Form.useWatch("splittingStrategy", form)
|
||||
const queryClient = useQueryClient()
|
||||
|
||||
const { data: ollamaInfo, status } = useQuery({
|
||||
@ -28,14 +31,18 @@ export const RagSettings = () => {
|
||||
chunkSize,
|
||||
defaultEM,
|
||||
totalFilePerKB,
|
||||
noOfRetrievedDocs
|
||||
noOfRetrievedDocs,
|
||||
splittingStrategy,
|
||||
splittingSeparator
|
||||
] = await Promise.all([
|
||||
getEmbeddingModels({ returnEmpty: true }),
|
||||
defaultEmbeddingChunkOverlap(),
|
||||
defaultEmbeddingChunkSize(),
|
||||
defaultEmbeddingModelForRag(),
|
||||
getTotalFilePerKB(),
|
||||
getNoOfRetrievedDocs()
|
||||
getNoOfRetrievedDocs(),
|
||||
defaultSplittingStrategy(),
|
||||
defaultSsplttingSeparator()
|
||||
])
|
||||
return {
|
||||
models: allModels,
|
||||
@ -43,7 +50,9 @@ export const RagSettings = () => {
|
||||
chunkSize,
|
||||
defaultEM,
|
||||
totalFilePerKB,
|
||||
noOfRetrievedDocs
|
||||
noOfRetrievedDocs,
|
||||
splittingStrategy,
|
||||
splittingSeparator
|
||||
}
|
||||
}
|
||||
})
|
||||
@ -55,13 +64,17 @@ export const RagSettings = () => {
|
||||
overlap: number
|
||||
totalFilePerKB: number
|
||||
noOfRetrievedDocs: number
|
||||
strategy: string
|
||||
separator: string
|
||||
}) => {
|
||||
await saveForRag(
|
||||
data.model,
|
||||
data.chunkSize,
|
||||
data.overlap,
|
||||
data.totalFilePerKB,
|
||||
data.noOfRetrievedDocs
|
||||
data.noOfRetrievedDocs,
|
||||
data.strategy,
|
||||
data.separator
|
||||
)
|
||||
return true
|
||||
},
|
||||
@ -85,6 +98,7 @@ export const RagSettings = () => {
|
||||
<div className="border border-b border-gray-200 dark:border-gray-600 mt-3 mb-6"></div>
|
||||
</div>
|
||||
<Form
|
||||
form={form}
|
||||
layout="vertical"
|
||||
onFinish={(data) => {
|
||||
saveRAG({
|
||||
@ -92,7 +106,9 @@ export const RagSettings = () => {
|
||||
chunkSize: data.chunkSize,
|
||||
overlap: data.chunkOverlap,
|
||||
totalFilePerKB: data.totalFilePerKB,
|
||||
noOfRetrievedDocs: data.noOfRetrievedDocs
|
||||
noOfRetrievedDocs: data.noOfRetrievedDocs,
|
||||
separator: data.splittingSeparator,
|
||||
strategy: data.splittingStrategy
|
||||
})
|
||||
}}
|
||||
initialValues={{
|
||||
@ -100,7 +116,9 @@ export const RagSettings = () => {
|
||||
chunkOverlap: ollamaInfo?.chunkOverlap,
|
||||
defaultEM: ollamaInfo?.defaultEM,
|
||||
totalFilePerKB: ollamaInfo?.totalFilePerKB,
|
||||
noOfRetrievedDocs: ollamaInfo?.noOfRetrievedDocs
|
||||
noOfRetrievedDocs: ollamaInfo?.noOfRetrievedDocs,
|
||||
splittingStrategy: ollamaInfo?.splittingStrategy,
|
||||
splittingSeparator: ollamaInfo?.splittingSeparator
|
||||
}}>
|
||||
<Form.Item
|
||||
name="defaultEM"
|
||||
@ -140,6 +158,50 @@ export const RagSettings = () => {
|
||||
/>
|
||||
</Form.Item>
|
||||
|
||||
<Form.Item
|
||||
name="splittingStrategy"
|
||||
label={t("rag.ragSettings.splittingStrategy.label")}
|
||||
rules={[
|
||||
{
|
||||
required: true,
|
||||
message: t("rag.ragSettings.model.required")
|
||||
}
|
||||
]}>
|
||||
<Select
|
||||
size="large"
|
||||
showSearch
|
||||
style={{ width: "100%" }}
|
||||
className="mt-4"
|
||||
options={[
|
||||
"RecursiveCharacterTextSplitter",
|
||||
"CharacterTextSplitter"
|
||||
].map((e) => ({
|
||||
label: e,
|
||||
value: e
|
||||
}))}
|
||||
/>
|
||||
</Form.Item>
|
||||
|
||||
{splittingStrategy !== "RecursiveCharacterTextSplitter" && (
|
||||
<Form.Item
|
||||
name="splittingSeparator"
|
||||
label={t("rag.ragSettings.splittingSeparator.label")}
|
||||
rules={[
|
||||
{
|
||||
required: true,
|
||||
message: t("rag.ragSettings.splittingSeparator.required")
|
||||
}
|
||||
]}>
|
||||
<Input
|
||||
size="large"
|
||||
style={{ width: "100%" }}
|
||||
placeholder={t(
|
||||
"rag.ragSettings.splittingSeparator.placeholder"
|
||||
)}
|
||||
/>
|
||||
</Form.Item>
|
||||
)}
|
||||
|
||||
<Form.Item
|
||||
name="chunkSize"
|
||||
label={t("rag.ragSettings.chunkSize.label")}
|
||||
|
@ -1,11 +1,6 @@
|
||||
import { getKnowledgeById, updateKnowledgeStatus } from "@/db/knowledge"
|
||||
import { PageAssistPDFUrlLoader } from "@/loader/pdf-url"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
getOllamaURL
|
||||
} from "@/services/ollama"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { getOllamaURL } from "@/services/ollama"
|
||||
import { PageAssistVectorStore } from "./PageAssistVectorStore"
|
||||
import { PageAssisCSVUrlLoader } from "@/loader/csv"
|
||||
import { PageAssisTXTUrlLoader } from "@/loader/txt"
|
||||
@ -13,7 +8,7 @@ import { PageAssistDocxLoader } from "@/loader/docx"
|
||||
import { cleanUrl } from "./clean-url"
|
||||
import { sendEmbeddingCompleteNotification } from "./send-notification"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
|
||||
export const processKnowledge = async (msg: any, id: string): Promise<void> => {
|
||||
console.log(`Processing knowledge with id: ${id}`)
|
||||
@ -32,12 +27,8 @@ export const processKnowledge = async (msg: any, id: string): Promise<void> => {
|
||||
baseUrl: cleanUrl(ollamaUrl),
|
||||
model: knowledge.embedding_model
|
||||
})
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
|
||||
const textSplitter = await getPageAssistTextSplitter()
|
||||
|
||||
for (const doc of knowledge.source) {
|
||||
if (doc.type === "pdf" || doc.type === "application/pdf") {
|
||||
@ -65,13 +56,15 @@ export const processKnowledge = async (msg: any, id: string): Promise<void> => {
|
||||
knownledge_id: knowledge.id,
|
||||
file_id: doc.source_id
|
||||
})
|
||||
} else if (doc.type === "docx" || doc.type === "application/vnd.openxmlformats-officedocument.wordprocessingml.document") {
|
||||
} else if (
|
||||
doc.type === "docx" ||
|
||||
doc.type ===
|
||||
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
||||
) {
|
||||
try {
|
||||
const loader = new PageAssistDocxLoader({
|
||||
fileName: doc.filename,
|
||||
buffer: await toArrayBufferFromBase64(
|
||||
doc.content
|
||||
)
|
||||
buffer: await toArrayBufferFromBase64(doc.content)
|
||||
})
|
||||
|
||||
let docs = await loader.load()
|
||||
|
@ -8,6 +8,9 @@ import { ollamaFormatAllCustomModels } from "@/db/models"
|
||||
|
||||
|
||||
const storage = new Storage()
|
||||
const storage2 = new Storage({
|
||||
area: "local"
|
||||
})
|
||||
|
||||
const DEFAULT_OLLAMA_URL = "http://127.0.0.1:11434"
|
||||
const DEFAULT_ASK_FOR_MODEL_SELECTION_EVERY_TIME = true
|
||||
@ -310,6 +313,22 @@ export const defaultEmbeddingChunkSize = async () => {
|
||||
return parseInt(embeddingChunkSize)
|
||||
}
|
||||
|
||||
export const defaultSplittingStrategy = async () => {
|
||||
const splittingStrategy = await storage.get("defaultSplittingStrategy")
|
||||
if (!splittingStrategy || splittingStrategy.length === 0) {
|
||||
return "RecursiveCharacterTextSplitter"
|
||||
}
|
||||
return splittingStrategy
|
||||
}
|
||||
|
||||
export const defaultSsplttingSeparator = async () => {
|
||||
const splittingSeparator = await storage.get("defaultSplittingSeparator")
|
||||
if (!splittingSeparator || splittingSeparator.length === 0) {
|
||||
return "\\n\\n"
|
||||
}
|
||||
return splittingSeparator
|
||||
}
|
||||
|
||||
export const defaultEmbeddingChunkOverlap = async () => {
|
||||
const embeddingChunkOverlap = await storage.get(
|
||||
"defaultEmbeddingChunkOverlap"
|
||||
@ -320,6 +339,14 @@ export const defaultEmbeddingChunkOverlap = async () => {
|
||||
return parseInt(embeddingChunkOverlap)
|
||||
}
|
||||
|
||||
export const setDefaultSplittingStrategy = async (strategy: string) => {
|
||||
await storage.set("defaultSplittingStrategy", strategy)
|
||||
}
|
||||
|
||||
export const setDefaultSplittingSeparator = async (separator: string) => {
|
||||
await storage.set("defaultSplittingSeparator", separator)
|
||||
}
|
||||
|
||||
export const setDefaultEmbeddingModelForRag = async (model: string) => {
|
||||
await storage.set("defaultEmbeddingModel", model)
|
||||
}
|
||||
@ -337,7 +364,9 @@ export const saveForRag = async (
|
||||
chunkSize: number,
|
||||
overlap: number,
|
||||
totalFilePerKB: number,
|
||||
noOfRetrievedDocs?: number
|
||||
noOfRetrievedDocs?: number,
|
||||
strategy?: string,
|
||||
separator?: string
|
||||
) => {
|
||||
await setDefaultEmbeddingModelForRag(model)
|
||||
await setDefaultEmbeddingChunkSize(chunkSize)
|
||||
@ -346,6 +375,12 @@ export const saveForRag = async (
|
||||
if (noOfRetrievedDocs) {
|
||||
await setNoOfRetrievedDocs(noOfRetrievedDocs)
|
||||
}
|
||||
if (strategy) {
|
||||
await setDefaultSplittingStrategy(strategy)
|
||||
}
|
||||
if (separator) {
|
||||
await setDefaultSplittingSeparator(separator)
|
||||
}
|
||||
}
|
||||
|
||||
export const getWebSearchPrompt = async () => {
|
||||
|
@ -1,12 +1,8 @@
|
||||
import { PageAssistHtmlLoader } from "~/loader/html"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize
|
||||
} from "@/services/ollama"
|
||||
import { PageAssistPDFLoader } from "@/loader/pdf"
|
||||
import { PAMemoryVectorStore } from "@/libs/PAMemoryVectorStore"
|
||||
import { getPageAssistTextSplitter } from "./text-splitter"
|
||||
|
||||
export const getLoader = ({
|
||||
html,
|
||||
@ -54,12 +50,7 @@ export const memoryEmbedding = async ({
|
||||
setIsEmbedding(true)
|
||||
const loader = getLoader({ html, pdf, type, url })
|
||||
const docs = await loader.load()
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
const textSplitter = await getPageAssistTextSplitter()
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
|
||||
|
37
src/utils/text-splitter.ts
Normal file
37
src/utils/text-splitter.ts
Normal file
@ -0,0 +1,37 @@
|
||||
import {
|
||||
RecursiveCharacterTextSplitter,
|
||||
CharacterTextSplitter
|
||||
} from "langchain/text_splitter"
|
||||
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultSsplttingSeparator,
|
||||
defaultSplittingStrategy
|
||||
} from "@/services/ollama"
|
||||
|
||||
export const getPageAssistTextSplitter = async () => {
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const splittingStrategy = await defaultSplittingStrategy()
|
||||
|
||||
switch (splittingStrategy) {
|
||||
case "CharacterTextSplitter":
|
||||
console.log("Using CharacterTextSplitter")
|
||||
const splittingSeparator = await defaultSsplttingSeparator()
|
||||
const processedSeparator = splittingSeparator
|
||||
.replace(/\\n/g, "\n")
|
||||
.replace(/\\t/g, "\t")
|
||||
.replace(/\\r/g, "\r")
|
||||
return new CharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap,
|
||||
separator: processedSeparator
|
||||
})
|
||||
default:
|
||||
return new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
}
|
||||
}
|
@ -2,15 +2,13 @@ import { cleanUrl } from "~/libs/clean-url"
|
||||
import { getIsSimpleInternetSearch, totalSearchResults, getBraveApiKey } from "@/services/search"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
import { PageAssistHtmlLoader } from "~/loader/html"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultEmbeddingModelForRag,
|
||||
getOllamaURL
|
||||
} from "~/services/ollama"
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
|
||||
interface BraveAPIResult {
|
||||
title: string
|
||||
@ -70,12 +68,7 @@ export const braveAPISearch = async (query: string) => {
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
const textSplitter = await getPageAssistTextSplitter()
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
const store = new MemoryVectorStore(ollamaEmbedding)
|
||||
|
@ -3,8 +3,6 @@ import { urlRewriteRuntime } from "@/libs/runtime"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultEmbeddingModelForRag,
|
||||
getOllamaURL
|
||||
} from "@/services/ollama"
|
||||
@ -12,10 +10,10 @@ import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import * as cheerio from "cheerio"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
|
||||
export const localBraveSearch = async (query: string) => {
|
||||
@ -87,12 +85,8 @@ export const webBraveSearch = async (query: string) => {
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
|
||||
const textSplitter = await getPageAssistTextSplitter();
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
|
||||
|
@ -3,8 +3,6 @@ import { urlRewriteRuntime } from "@/libs/runtime"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultEmbeddingModelForRag,
|
||||
getOllamaURL
|
||||
} from "@/services/ollama"
|
||||
@ -12,9 +10,9 @@ import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import * as cheerio from "cheerio"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
|
||||
export const localDuckDuckGoSearch = async (query: string) => {
|
||||
@ -90,12 +88,7 @@ export const webDuckDuckGoSearch = async (query: string) => {
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
const textSplitter = await getPageAssistTextSplitter()
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
|
||||
|
@ -4,15 +4,13 @@ import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
import { cleanUrl } from "~/libs/clean-url"
|
||||
import { urlRewriteRuntime } from "~/libs/runtime"
|
||||
import { PageAssistHtmlLoader } from "~/loader/html"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultEmbeddingModelForRag,
|
||||
getOllamaURL
|
||||
} from "~/services/ollama"
|
||||
@ -91,12 +89,8 @@ export const webGoogleSearch = async (query: string) => {
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
|
||||
const textSplitter = await getPageAssistTextSplitter()
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
|
||||
|
@ -3,15 +3,13 @@ import { cleanUrl } from "~/libs/clean-url"
|
||||
import { getSearxngURL, isSearxngJSONMode, getIsSimpleInternetSearch, totalSearchResults } from "@/services/search"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
import { PageAssistHtmlLoader } from "~/loader/html"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultEmbeddingModelForRag,
|
||||
getOllamaURL
|
||||
} from "~/services/ollama"
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
|
||||
interface SearxNGJSONResult {
|
||||
title: string
|
||||
@ -73,12 +71,8 @@ export const searxngSearch = async (query: string) => {
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
|
||||
const textSplitter = await getPageAssistTextSplitter();
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
const store = new MemoryVectorStore(ollamaEmbedding)
|
||||
|
@ -3,8 +3,6 @@ import { urlRewriteRuntime } from "@/libs/runtime"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
defaultEmbeddingModelForRag,
|
||||
getOllamaURL
|
||||
} from "@/services/ollama"
|
||||
@ -12,9 +10,9 @@ import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import * as cheerio from "cheerio"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
const getCorrectTargeUrl = async (url: string) => {
|
||||
if (!url) return ""
|
||||
@ -104,12 +102,7 @@ export const webSogouSearch = async (query: string) => {
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
const textSplitter = await getPageAssistTextSplitter()
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
|
||||
|
@ -1,8 +1,9 @@
|
||||
import { cleanUrl } from "@/libs/clean-url"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import { defaultEmbeddingChunkOverlap, defaultEmbeddingChunkSize, defaultEmbeddingModelForRag, getOllamaURL } from "@/services/ollama"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { defaultEmbeddingModelForRag, getOllamaURL } from "@/services/ollama"
|
||||
import { getPageAssistTextSplitter } from "@/utils/text-splitter"
|
||||
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
|
||||
export const processSingleWebsite = async (url: string, query: string) => {
|
||||
@ -20,12 +21,8 @@ export const processSingleWebsite = async (url: string, query: string) => {
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
const chunkSize = await defaultEmbeddingChunkSize()
|
||||
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize,
|
||||
chunkOverlap
|
||||
})
|
||||
|
||||
const textSplitter = await getPageAssistTextSplitter()
|
||||
|
||||
const chunks = await textSplitter.splitDocuments(docs)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user