chore: Update version to 1.1.9 and add Model Settings to Ollama settings page

This commit is contained in:
n4ze3m 2024-05-23 00:39:44 +05:30
parent d2afcc6a39
commit b3a455382c
13 changed files with 1271 additions and 18 deletions

View File

@ -50,5 +50,39 @@
"noHistory": "No chat history",
"chatWithCurrentPage": "Chat with current page",
"beta": "Beta",
"tts": "Read aloud"
"tts": "Read aloud",
"modelSettings": {
"label": "Model Settings",
"currentChatModelSettings":"Current Chat Model Settings",
"description": "Set the model options globally for all chats",
"form": {
"keepAlive": {
"label": "Keep Alive",
"help": "controls how long the model will stay loaded into memory following the request (default: 5m)",
"placeholder": "Enter Keep Alive duration (e.g. 5m, 10m, 1h)"
},
"temperature": {
"label": "Temperature",
"placeholder": "Enter Temperature value (e.g. 0.7, 1.0)"
},
"numCtx": {
"label": "Number of Contexts",
"placeholder": "Enter Number of Contexts value (default: 2048)"
},
"seed": {
"label": "Seed",
"placeholder": "Enter Seed value (e.g. 1234)",
"help": "Reproducibility of the model output"
},
"topK": {
"label": "Top K",
"placeholder": "Enter Top K value (e.g. 40, 100)"
},
"topP": {
"label": "Top P",
"placeholder": "Enter Top P value (e.g. 0.9, 0.95)"
}
},
"advanced": "More Model Settings"
}
}

View File

@ -0,0 +1,138 @@
import { getAllModelSettings } from "@/services/model-settings"
import { useStoreChatModelSettings } from "@/store/model"
import { useQuery } from "@tanstack/react-query"
import { Collapse, Form, Input, InputNumber, Modal, Skeleton } from "antd"
import React from "react"
import { useTranslation } from "react-i18next"
type Props = {
open: boolean
setOpen: (open: boolean) => void
}
export const CurrentChatModelSettings = ({ open, setOpen }: Props) => {
const { t } = useTranslation("common")
const [form] = Form.useForm()
const cUserSettings = useStoreChatModelSettings()
const { isPending: isLoading } = useQuery({
queryKey: ["fetchModelConfig2", open],
queryFn: async () => {
const data = await getAllModelSettings()
form.setFieldsValue({
temperature: cUserSettings.temperature ?? data.temperature,
topK: cUserSettings.topK ?? data.topK,
topP: cUserSettings.topP ?? data.topP,
keepAlive: cUserSettings.keepAlive ?? data.keepAlive,
numCtx: cUserSettings.numCtx ?? data.numCtx,
seed: cUserSettings.seed
})
return data
},
enabled: open,
refetchOnMount: true
})
return (
<Modal
title={t("modelSettings.currentChatModelSettings")}
open={open}
onOk={() => setOpen(false)}
onCancel={() => setOpen(false)}
footer={null}>
{!isLoading ? (
<Form
onFinish={(values: {
keepAlive: string
temperature: number
topK: number
topP: number
}) => {
Object.entries(values).forEach(([key, value]) => {
cUserSettings.setX(key, value)
setOpen(false)
})
}}
form={form}
layout="vertical">
<Form.Item
name="keepAlive"
help={t("modelSettings.form.keepAlive.help")}
label={t("modelSettings.form.keepAlive.label")}>
<Input
size="large"
placeholder={t("modelSettings.form.keepAlive.placeholder")}
/>
</Form.Item>
<Form.Item
name="temperature"
label={t("modelSettings.form.temperature.label")}>
<InputNumber
size="large"
style={{ width: "100%" }}
placeholder={t("modelSettings.form.temperature.placeholder")}
/>
</Form.Item>
<Form.Item
name="seed"
help={t("modelSettings.form.seed.help")}
label={t("modelSettings.form.seed.label")}>
<InputNumber
size="large"
style={{ width: "100%" }}
placeholder={t("modelSettings.form.seed.placeholder")}
/>
</Form.Item>
<Form.Item name="numCtx" label={t("modelSettings.form.numCtx.label")}>
<InputNumber
style={{ width: "100%" }}
placeholder={t("modelSettings.form.numCtx.placeholder")}
size="large"
/>
</Form.Item>
<Collapse
ghost
className="border-none bg-transparent"
items={[
{
key: "1",
label: t("modelSettings.advanced"),
children: (
<React.Fragment>
<Form.Item
name="topK"
label={t("modelSettings.form.topK.label")}>
<InputNumber
style={{ width: "100%" }}
placeholder={t("modelSettings.form.topK.placeholder")}
size="large"
/>
</Form.Item>
<Form.Item
name="topP"
label={t("modelSettings.form.topP.label")}>
<InputNumber
style={{ width: "100%" }}
size="large"
placeholder={t("modelSettings.form.topP.placeholder")}
/>
</Form.Item>
</React.Fragment>
)
}
]}
/>
<button
type="submit"
className="inline-flex justify-center w-full text-center mt-4 items-center rounded-md border border-transparent bg-black px-2 py-2 text-sm font-medium leading-4 text-white shadow-sm hover:bg-gray-700 focus:outline-none focus:ring-2 focus:ring-indigo-500 focus:ring-offset-2 dark:bg-white dark:text-gray-800 dark:hover:bg-gray-100 dark:focus:ring-gray-500 dark:focus:ring-offset-gray-100 disabled:opacity-50 ">
{t("save")}
</button>
</Form>
) : (
<Skeleton active />
)}
</Modal>
)
}

View File

@ -0,0 +1,29 @@
import React from "react"
export const ChatSettings = React.forwardRef<
SVGSVGElement,
React.SVGProps<SVGSVGElement>
>((props, ref) => {
return (
<svg
xmlns="http://www.w3.org/2000/svg"
fill="none"
stroke="currentColor"
strokeLinecap="round"
strokeLinejoin="round"
className="lucide lucide-message-circle-x"
viewBox="0 0 24 24"
ref={ref}
strokeWidth={2}
{...props}>
<path d="M7.9 20A9 9 0 104 16.1L2 22z"
></path>
<path
strokeWidth={1}
d="M12 2h-.44a2 2 0 00-2 2v.18a2 2 0 01-1 1.73l-.43.25a2 2 0 01-2 0l-.15-.08a2 2 0 00-2.73.73l-.22.38a2 2 0 00.73 2.73l.15.1a2 2 0 011 1.72v.51a2 2 0 01-1 1.74l-.15.09a2 2 0 00-.73 2.73l.22.38a2 2 0 002.73.73l.15-.08a2 2 0 012 0l.43.25a2 2 0 011 1.73V20a2 2 0 002 2H12a2 2 0 002-2v-.18a2 2 0 011-1.73l.43-.25a2 2 0 012 0l.15.08a2 2 0 002.73-.73l.22-.39a2 2 0 00-.73-2.73l-.15-.08a2 2 0 01-1-1.74v-.5a2 2 0 011-1.74l.15-.09a2 2 0 00.73-2.73l-.22-.38a2 2 0 00-2.73-.73l-.15.08a2 2 0 01-2 0L15 5.91a2 2 0 01-1-1.73V4a2 2 0 00-2-2z"
transform="matrix(.5 0 0 .5 6 6)"></path>
<circle cx="12" cy="12" r="0.5"></circle>
</svg>
)
})

View File

@ -7,6 +7,7 @@ import { useQuery } from "@tanstack/react-query"
import { fetchChatModels, getAllModels } from "~/services/ollama"
import { useMessageOption } from "~/hooks/useMessageOption"
import {
BrainCog,
ChevronLeft,
CogIcon,
ComputerIcon,
@ -24,6 +25,8 @@ import { SelectedKnowledge } from "../Option/Knowledge/SelectedKnwledge"
import { useStorage } from "@plasmohq/storage/hook"
import { ModelSelect } from "../Common/ModelSelect"
import { PromptSelect } from "../Common/PromptSelect"
import { ChatSettings } from "../Icons/ChatSettings"
import { CurrentChatModelSettings } from "../Common/CurrentChatModelSettings"
export default function OptionLayout({
children
@ -33,6 +36,7 @@ export default function OptionLayout({
const [sidebarOpen, setSidebarOpen] = useState(false)
const { t } = useTranslation(["option", "common"])
const [shareModeEnabled] = useStorage("shareMode", false)
const [openModelSettings, setOpenModelSettings] = useState(false)
const {
selectedModel,
@ -108,9 +112,7 @@ export default function OptionLayout({
onClick={clearChat}
className="inline-flex dark:bg-transparent bg-white items-center rounded-lg border dark:border-gray-700 bg-transparent px-3 py-2.5 text-xs lg:text-sm font-medium leading-4 text-gray-800 dark:text-white disabled:opacity-50 ease-in-out transition-colors duration-200 hover:bg-gray-100 dark:hover:bg-gray-800 dark:hover:text-white">
<SquarePen className="h-5 w-5 " />
<span className=" truncate ml-3">
{t("newChat")}
</span>
<span className=" truncate ml-3">{t("newChat")}</span>
</button>
</div>
<span className="text-lg font-thin text-zinc-300 dark:text-zinc-600">
@ -193,6 +195,13 @@ export default function OptionLayout({
<div className="flex flex-1 justify-end px-4">
<div className="ml-4 flex items-center md:ml-6">
<div className="flex gap-4 items-center">
<Tooltip title={t("currentChatModelSettings")}>
<button
onClick={() => setOpenModelSettings(true)}
className="!text-gray-500 dark:text-gray-300 hover:text-gray-600 dark:hover:text-gray-300 transition-colors">
<BrainCog className="w-6 h-6" />
</button>
</Tooltip>
{pathname === "/" &&
messages.length > 0 &&
!streaming &&
@ -228,6 +237,11 @@ export default function OptionLayout({
open={sidebarOpen}>
<Sidebar onClose={() => setSidebarOpen(false)} />
</Drawer>
<CurrentChatModelSettings
open={openModelSettings}
setOpen={setOpenModelSettings}
/>
</div>
)
}

View File

@ -0,0 +1,123 @@
import { SaveButton } from "@/components/Common/SaveButton"
import { getAllModelSettings, setModelSetting } from "@/services/model-settings"
import { useQuery, useQueryClient } from "@tanstack/react-query"
import { Form, Skeleton, Input, Switch, InputNumber, Collapse } from "antd"
import React from "react"
import { useTranslation } from "react-i18next"
// keepAlive?: string
// temperature?: number
// topK?: number
// topP?: number
export const ModelSettings = () => {
const { t } = useTranslation("common")
const [form] = Form.useForm()
const client = useQueryClient()
const { isPending: isLoading } = useQuery({
queryKey: ["fetchModelConfig"],
queryFn: async () => {
const data = await getAllModelSettings()
form.setFieldsValue(data)
return data
}
})
return (
<div>
<div>
<h2 className="text-base font-semibold leading-7 text-gray-900 dark:text-white">
{t("modelSettings.label")}
</h2>
<p className="text-sm text-gray-500 dark:text-neutral-400 mt-1">
{t("modelSettings.description")}
</p>
<div className="border border-b border-gray-200 dark:border-gray-600 mt-3 mb-6"></div>
</div>
{!isLoading ? (
<Form
onFinish={(values: {
keepAlive: string
temperature: number
topK: number
topP: number
}) => {
Object.entries(values).forEach(([key, value]) => {
setModelSetting(key, value)
})
client.invalidateQueries({
queryKey: ["fetchModelConfig"]
})
}}
form={form}
layout="vertical">
<Form.Item
name="keepAlive"
help={t("modelSettings.form.keepAlive.help")}
label={t("modelSettings.form.keepAlive.label")}>
<Input
size="large"
placeholder={t("modelSettings.form.keepAlive.placeholder")}
/>
</Form.Item>
<Form.Item
name="temperature"
label={t("modelSettings.form.temperature.label")}>
<InputNumber
size="large"
style={{ width: "100%" }}
placeholder={t("modelSettings.form.temperature.placeholder")}
/>
</Form.Item>
<Form.Item name="numCtx" label={t("modelSettings.form.numCtx.label")}>
<InputNumber
style={{ width: "100%" }}
placeholder={t("modelSettings.form.numCtx.placeholder")}
size="large"
/>
</Form.Item>
<Collapse
ghost
className="border-none bg-transparent"
items={[
{
key: "1",
label: t("modelSettings.advanced"),
children: (
<React.Fragment>
<Form.Item
name="topK"
label={t("modelSettings.form.topK.label")}>
<InputNumber
style={{ width: "100%" }}
placeholder={t("modelSettings.form.topK.placeholder")}
size="large"
/>
</Form.Item>
<Form.Item
name="topP"
label={t("modelSettings.form.topP.label")}>
<InputNumber
style={{ width: "100%" }}
size="large"
placeholder={t("modelSettings.form.topP.placeholder")}
/>
</Form.Item>
</React.Fragment>
)
}
]}
/>
<div className="flex justify-end">
<SaveButton btnType="submit" />
</div>
</Form>
) : (
<Skeleton active />
)}
</div>
)
}

View File

@ -15,6 +15,7 @@ import { SettingPrompt } from "./prompt"
import { Trans, useTranslation } from "react-i18next"
import { useStorage } from "@plasmohq/storage/hook"
import { AdvanceOllamaSettings } from "@/components/Common/AdvanceOllamaSettings"
import { ModelSettings } from "./model-settings"
export const SettingsOllama = () => {
const [ollamaURL, setOllamaURL] = useState<string>("")
@ -219,6 +220,7 @@ export const SettingsOllama = () => {
</div>
</Form>
</div>
<ModelSettings />
<div>
<div>
@ -229,6 +231,8 @@ export const SettingsOllama = () => {
</div>
<SettingPrompt />
</div>
</div>
)}
</div>

View File

@ -8,7 +8,6 @@ import { useTranslation } from "react-i18next"
export const SearchModeSettings = () => {
const { t } = useTranslation("settings")
const queryClient = useQueryClient()
const form = useForm({
initialValues: {

View File

@ -8,7 +8,6 @@ import {
systemPromptForNonRagOption
} from "~/services/ollama"
import { type ChatHistory, type Message } from "~/store/option"
import { ChatOllama } from "@langchain/community/chat_models/ollama"
import { HumanMessage, SystemMessage } from "@langchain/core/messages"
import { useStoreMessageOption } from "~/store/option"
import {
@ -29,8 +28,10 @@ import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
import { PageAssistVectorStore } from "@/libs/PageAssistVectorStore"
import { formatDocs } from "@/chain/chat-with-x"
import { useWebUI } from "@/store/webui"
import { isTTSEnabled } from "@/services/tts"
import { useStorage } from "@plasmohq/storage/hook"
import { useStoreChatModelSettings } from "@/store/model"
import { getAllDefaultModelSettings } from "@/services/model-settings"
import { ChatOllama } from "@/models/ChatOllama"
export const useMessageOption = () => {
const {
@ -66,6 +67,7 @@ export const useMessageOption = () => {
selectedKnowledge,
setSelectedKnowledge
} = useStoreMessageOption()
const currentChatModelSettings = useStoreChatModelSettings()
const [selectedModel, setSelectedModel] = useStorage("selectedModel")
const { ttsEnabled } = useWebUI()
@ -75,7 +77,6 @@ export const useMessageOption = () => {
const navigate = useNavigate()
const textareaRef = React.useRef<HTMLTextAreaElement>(null)
const clearChat = () => {
navigate("/")
setMessages([])
@ -85,6 +86,7 @@ export const useMessageOption = () => {
setIsLoading(false)
setIsProcessing(false)
setStreaming(false)
currentChatModelSettings.reset()
textareaRef?.current?.focus()
}
@ -97,14 +99,25 @@ export const useMessageOption = () => {
signal: AbortSignal
) => {
const url = await getOllamaURL()
const userDefaultModelSettings = await getAllDefaultModelSettings()
if (image.length > 0) {
image = `data:image/jpeg;base64,${image.split(",")[1]}`
}
const ollama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
baseUrl: cleanUrl(url),
keepAlive:
currentChatModelSettings?.keepAlive ??
userDefaultModelSettings?.keepAlive,
temperature:
currentChatModelSettings?.temperature ??
userDefaultModelSettings?.temperature,
topK: currentChatModelSettings?.topK ?? userDefaultModelSettings?.topK,
topP: currentChatModelSettings?.topP ?? userDefaultModelSettings?.topP,
numCtx:
currentChatModelSettings?.numCtx ?? userDefaultModelSettings?.numCtx,
seed: currentChatModelSettings?.seed
})
let newMessage: Message[] = []
@ -163,7 +176,21 @@ export const useMessageOption = () => {
.replaceAll("{question}", message)
const questionOllama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
baseUrl: cleanUrl(url),
keepAlive:
currentChatModelSettings?.keepAlive ??
userDefaultModelSettings?.keepAlive,
temperature:
currentChatModelSettings?.temperature ??
userDefaultModelSettings?.temperature,
topK:
currentChatModelSettings?.topK ?? userDefaultModelSettings?.topK,
topP:
currentChatModelSettings?.topP ?? userDefaultModelSettings?.topP,
numCtx:
currentChatModelSettings?.numCtx ??
userDefaultModelSettings?.numCtx,
seed: currentChatModelSettings?.seed
})
const response = await questionOllama.invoke(promptForQuestion)
query = response.content.toString()
@ -172,7 +199,7 @@ export const useMessageOption = () => {
const { prompt, source } = await getSystemPromptForWeb(query)
setIsSearchingInternet(false)
// message = message.trim().replaceAll("\n", " ")
// message = message.trim().replaceAll("\n", " ")
let humanMessage = new HumanMessage({
content: [
@ -314,6 +341,7 @@ export const useMessageOption = () => {
signal: AbortSignal
) => {
const url = await getOllamaURL()
const userDefaultModelSettings = await getAllDefaultModelSettings()
if (image.length > 0) {
image = `data:image/jpeg;base64,${image.split(",")[1]}`
@ -321,7 +349,18 @@ export const useMessageOption = () => {
const ollama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
baseUrl: cleanUrl(url),
keepAlive:
currentChatModelSettings?.keepAlive ??
userDefaultModelSettings?.keepAlive,
temperature:
currentChatModelSettings?.temperature ??
userDefaultModelSettings?.temperature,
topK: currentChatModelSettings?.topK ?? userDefaultModelSettings?.topK,
topP: currentChatModelSettings?.topP ?? userDefaultModelSettings?.topP,
numCtx:
currentChatModelSettings?.numCtx ?? userDefaultModelSettings?.numCtx,
seed: currentChatModelSettings?.seed
})
let newMessage: Message[] = []
@ -521,10 +560,22 @@ export const useMessageOption = () => {
signal: AbortSignal
) => {
const url = await getOllamaURL()
const userDefaultModelSettings = await getAllDefaultModelSettings()
const ollama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
baseUrl: cleanUrl(url),
keepAlive:
currentChatModelSettings?.keepAlive ??
userDefaultModelSettings?.keepAlive,
temperature:
currentChatModelSettings?.temperature ??
userDefaultModelSettings?.temperature,
topK: currentChatModelSettings?.topK ?? userDefaultModelSettings?.topK,
topP: currentChatModelSettings?.topP ?? userDefaultModelSettings?.topP,
numCtx:
currentChatModelSettings?.numCtx ?? userDefaultModelSettings?.numCtx,
seed: currentChatModelSettings?.seed
})
let newMessage: Message[] = []
@ -568,7 +619,10 @@ export const useMessageOption = () => {
const ollamaUrl = await getOllamaURL()
const ollamaEmbedding = new OllamaEmbeddings({
model: embeddingModle || selectedModel,
baseUrl: cleanUrl(ollamaUrl)
baseUrl: cleanUrl(ollamaUrl),
keepAlive:
currentChatModelSettings?.keepAlive ??
userDefaultModelSettings?.keepAlive
})
let vectorstore = await PageAssistVectorStore.fromExistingIndex(
@ -596,7 +650,21 @@ export const useMessageOption = () => {
.replaceAll("{question}", message)
const questionOllama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
baseUrl: cleanUrl(url),
keepAlive:
currentChatModelSettings?.keepAlive ??
userDefaultModelSettings?.keepAlive,
temperature:
currentChatModelSettings?.temperature ??
userDefaultModelSettings?.temperature,
topK:
currentChatModelSettings?.topK ?? userDefaultModelSettings?.topK,
topP:
currentChatModelSettings?.topP ?? userDefaultModelSettings?.topP,
numCtx:
currentChatModelSettings?.numCtx ??
userDefaultModelSettings?.numCtx,
seed: currentChatModelSettings?.seed
})
const response = await questionOllama.invoke(promptForQuestion)
query = response.content.toString()
@ -613,7 +681,7 @@ export const useMessageOption = () => {
url: ""
}
})
// message = message.trim().replaceAll("\n", " ")
// message = message.trim().replaceAll("\n", " ")
let humanMessage = new HumanMessage({
content: [

406
src/models/ChatOllama.ts Normal file
View File

@ -0,0 +1,406 @@
import type { BaseLanguageModelCallOptions } from "@langchain/core/language_models/base";
import {
SimpleChatModel,
type BaseChatModelParams,
} from "@langchain/core/language_models/chat_models";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import {
AIMessageChunk,
BaseMessage,
ChatMessage,
} from "@langchain/core/messages";
import { ChatGenerationChunk } from "@langchain/core/outputs";
import type { StringWithAutocomplete } from "@langchain/core/utils/types";
import {
createOllamaChatStream,
createOllamaGenerateStream,
type OllamaInput,
type OllamaMessage,
} from "./utils/ollama";
export interface ChatOllamaInput extends OllamaInput { }
export interface ChatOllamaCallOptions extends BaseLanguageModelCallOptions { }
export class ChatOllama
extends SimpleChatModel<ChatOllamaCallOptions>
implements ChatOllamaInput {
static lc_name() {
return "ChatOllama";
}
lc_serializable = true;
model = "llama2";
baseUrl = "http://localhost:11434";
keepAlive = "5m";
embeddingOnly?: boolean;
f16KV?: boolean;
frequencyPenalty?: number;
headers?: Record<string, string>;
logitsAll?: boolean;
lowVram?: boolean;
mainGpu?: number;
mirostat?: number;
mirostatEta?: number;
mirostatTau?: number;
numBatch?: number;
numCtx?: number;
numGpu?: number;
numGqa?: number;
numKeep?: number;
numPredict?: number;
numThread?: number;
penalizeNewline?: boolean;
presencePenalty?: number;
repeatLastN?: number;
repeatPenalty?: number;
ropeFrequencyBase?: number;
ropeFrequencyScale?: number;
temperature?: number;
stop?: string[];
tfsZ?: number;
topK?: number;
topP?: number;
typicalP?: number;
useMLock?: boolean;
useMMap?: boolean;
vocabOnly?: boolean;
seed?: number;
format?: StringWithAutocomplete<"json">;
constructor(fields: OllamaInput & BaseChatModelParams) {
super(fields);
this.model = fields.model ?? this.model;
this.baseUrl = fields.baseUrl?.endsWith("/")
? fields.baseUrl.slice(0, -1)
: fields.baseUrl ?? this.baseUrl;
this.keepAlive = fields.keepAlive ?? this.keepAlive;
this.embeddingOnly = fields.embeddingOnly;
this.f16KV = fields.f16KV;
this.frequencyPenalty = fields.frequencyPenalty;
this.headers = fields.headers;
this.logitsAll = fields.logitsAll;
this.lowVram = fields.lowVram;
this.mainGpu = fields.mainGpu;
this.mirostat = fields.mirostat;
this.mirostatEta = fields.mirostatEta;
this.mirostatTau = fields.mirostatTau;
this.numBatch = fields.numBatch;
this.numCtx = fields.numCtx;
this.numGpu = fields.numGpu;
this.numGqa = fields.numGqa;
this.numKeep = fields.numKeep;
this.numPredict = fields.numPredict;
this.numThread = fields.numThread;
this.penalizeNewline = fields.penalizeNewline;
this.presencePenalty = fields.presencePenalty;
this.repeatLastN = fields.repeatLastN;
this.repeatPenalty = fields.repeatPenalty;
this.ropeFrequencyBase = fields.ropeFrequencyBase;
this.ropeFrequencyScale = fields.ropeFrequencyScale;
this.temperature = fields.temperature;
this.stop = fields.stop;
this.tfsZ = fields.tfsZ;
this.topK = fields.topK;
this.topP = fields.topP;
this.typicalP = fields.typicalP;
this.useMLock = fields.useMLock;
this.useMMap = fields.useMMap;
this.vocabOnly = fields.vocabOnly;
this.format = fields.format;
this.seed = fields.seed;
}
protected getLsParams(options: this["ParsedCallOptions"]) {
const params = this.invocationParams(options);
return {
ls_provider: "ollama",
ls_model_name: this.model,
ls_model_type: "chat",
ls_temperature: this.temperature ?? undefined,
ls_stop: this.stop,
ls_max_tokens: params.options.num_predict,
};
}
_llmType() {
return "ollama";
}
/**
* A method that returns the parameters for an Ollama API call. It
* includes model and options parameters.
* @param options Optional parsed call options.
* @returns An object containing the parameters for an Ollama API call.
*/
invocationParams(options?: this["ParsedCallOptions"]) {
return {
model: this.model,
format: this.format,
keep_alive: this.keepAlive,
options: {
embedding_only: this.embeddingOnly,
f16_kv: this.f16KV,
frequency_penalty: this.frequencyPenalty,
logits_all: this.logitsAll,
low_vram: this.lowVram,
main_gpu: this.mainGpu,
mirostat: this.mirostat,
mirostat_eta: this.mirostatEta,
mirostat_tau: this.mirostatTau,
num_batch: this.numBatch,
num_ctx: this.numCtx,
num_gpu: this.numGpu,
num_gqa: this.numGqa,
num_keep: this.numKeep,
num_predict: this.numPredict,
num_thread: this.numThread,
penalize_newline: this.penalizeNewline,
presence_penalty: this.presencePenalty,
repeat_last_n: this.repeatLastN,
repeat_penalty: this.repeatPenalty,
rope_frequency_base: this.ropeFrequencyBase,
rope_frequency_scale: this.ropeFrequencyScale,
temperature: this.temperature,
stop: options?.stop ?? this.stop,
tfs_z: this.tfsZ,
top_k: this.topK,
top_p: this.topP,
typical_p: this.typicalP,
use_mlock: this.useMLock,
use_mmap: this.useMMap,
vocab_only: this.vocabOnly,
seed: this.seed,
},
};
}
_combineLLMOutput() {
return {};
}
/** @deprecated */
async *_streamResponseChunksLegacy(
input: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<ChatGenerationChunk> {
const stream = createOllamaGenerateStream(
this.baseUrl,
{
...this.invocationParams(options),
prompt: this._formatMessagesAsPrompt(input),
},
{
...options,
headers: this.headers,
}
);
for await (const chunk of stream) {
if (!chunk.done) {
yield new ChatGenerationChunk({
text: chunk.response,
message: new AIMessageChunk({ content: chunk.response }),
});
await runManager?.handleLLMNewToken(chunk.response ?? "");
} else {
yield new ChatGenerationChunk({
text: "",
message: new AIMessageChunk({ content: "" }),
generationInfo: {
model: chunk.model,
total_duration: chunk.total_duration,
load_duration: chunk.load_duration,
prompt_eval_count: chunk.prompt_eval_count,
prompt_eval_duration: chunk.prompt_eval_duration,
eval_count: chunk.eval_count,
eval_duration: chunk.eval_duration,
},
});
}
}
}
async *_streamResponseChunks(
input: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<ChatGenerationChunk> {
try {
const stream = await this.caller.call(async () =>
createOllamaChatStream(
this.baseUrl,
{
...this.invocationParams(options),
messages: this._convertMessagesToOllamaMessages(input),
},
{
...options,
headers: this.headers,
}
)
);
for await (const chunk of stream) {
if (!chunk.done) {
yield new ChatGenerationChunk({
text: chunk.message.content,
message: new AIMessageChunk({ content: chunk.message.content }),
});
await runManager?.handleLLMNewToken(chunk.message.content ?? "");
} else {
yield new ChatGenerationChunk({
text: "",
message: new AIMessageChunk({ content: "" }),
generationInfo: {
model: chunk.model,
total_duration: chunk.total_duration,
load_duration: chunk.load_duration,
prompt_eval_count: chunk.prompt_eval_count,
prompt_eval_duration: chunk.prompt_eval_duration,
eval_count: chunk.eval_count,
eval_duration: chunk.eval_duration,
},
});
}
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} catch (e: any) {
if (e.response?.status === 404) {
console.warn(
"[WARNING]: It seems you are using a legacy version of Ollama. Please upgrade to a newer version for better chat support."
);
yield* this._streamResponseChunksLegacy(input, options, runManager);
} else {
throw e;
}
}
}
protected _convertMessagesToOllamaMessages(
messages: BaseMessage[]
): OllamaMessage[] {
return messages.map((message) => {
let role;
if (message._getType() === "human") {
role = "user";
} else if (message._getType() === "ai") {
role = "assistant";
} else if (message._getType() === "system") {
role = "system";
} else {
throw new Error(
`Unsupported message type for Ollama: ${message._getType()}`
);
}
let content = "";
const images = [];
if (typeof message.content === "string") {
content = message.content;
} else {
for (const contentPart of message.content) {
if (contentPart.type === "text") {
content = `${content}\n${contentPart.text}`;
} else if (
contentPart.type === "image_url" &&
typeof contentPart.image_url === "string"
) {
const imageUrlComponents = contentPart.image_url.split(",");
// Support both data:image/jpeg;base64,<image> format as well
images.push(imageUrlComponents[1] ?? imageUrlComponents[0]);
} else {
throw new Error(
`Unsupported message content type. Must either have type "text" or type "image_url" with a string "image_url" field.`
);
}
}
}
return {
role,
content,
images,
};
});
}
/** @deprecated */
protected _formatMessagesAsPrompt(messages: BaseMessage[]): string {
const formattedMessages = messages
.map((message) => {
let messageText;
if (message._getType() === "human") {
messageText = `[INST] ${message.content} [/INST]`;
} else if (message._getType() === "ai") {
messageText = message.content;
} else if (message._getType() === "system") {
messageText = `<<SYS>> ${message.content} <</SYS>>`;
} else if (ChatMessage.isInstance(message)) {
messageText = `\n\n${message.role[0].toUpperCase()}${message.role.slice(
1
)}: ${message.content}`;
} else {
console.warn(
`Unsupported message type passed to Ollama: "${message._getType()}"`
);
messageText = "";
}
return messageText;
})
.join("\n");
return formattedMessages;
}
/** @ignore */
async _call(
messages: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): Promise<string> {
const chunks = [];
for await (const chunk of this._streamResponseChunks(
messages,
options,
runManager
)) {
chunks.push(chunk.message.content);
}
return chunks.join("");
}
}

201
src/models/utils/ollama.ts Normal file
View File

@ -0,0 +1,201 @@
import { IterableReadableStream } from "@langchain/core/utils/stream";
import type { StringWithAutocomplete } from "@langchain/core/utils/types";
import { BaseLanguageModelCallOptions } from "@langchain/core/language_models/base";
export interface OllamaInput {
embeddingOnly?: boolean;
f16KV?: boolean;
frequencyPenalty?: number;
headers?: Record<string, string>;
keepAlive?: string;
logitsAll?: boolean;
lowVram?: boolean;
mainGpu?: number;
model?: string;
baseUrl?: string;
mirostat?: number;
mirostatEta?: number;
mirostatTau?: number;
numBatch?: number;
numCtx?: number;
numGpu?: number;
numGqa?: number;
numKeep?: number;
numPredict?: number;
numThread?: number;
penalizeNewline?: boolean;
presencePenalty?: number;
repeatLastN?: number;
repeatPenalty?: number;
ropeFrequencyBase?: number;
ropeFrequencyScale?: number;
temperature?: number;
stop?: string[];
tfsZ?: number;
topK?: number;
topP?: number;
typicalP?: number;
useMLock?: boolean;
useMMap?: boolean;
vocabOnly?: boolean;
seed?: number;
format?: StringWithAutocomplete<"json">;
}
export interface OllamaRequestParams {
model: string;
format?: StringWithAutocomplete<"json">;
images?: string[];
options: {
embedding_only?: boolean;
f16_kv?: boolean;
frequency_penalty?: number;
logits_all?: boolean;
low_vram?: boolean;
main_gpu?: number;
mirostat?: number;
mirostat_eta?: number;
mirostat_tau?: number;
num_batch?: number;
num_ctx?: number;
num_gpu?: number;
num_gqa?: number;
num_keep?: number;
num_thread?: number;
num_predict?: number;
penalize_newline?: boolean;
presence_penalty?: number;
repeat_last_n?: number;
repeat_penalty?: number;
rope_frequency_base?: number;
rope_frequency_scale?: number;
temperature?: number;
stop?: string[];
tfs_z?: number;
top_k?: number;
top_p?: number;
typical_p?: number;
use_mlock?: boolean;
use_mmap?: boolean;
vocab_only?: boolean;
};
}
export type OllamaMessage = {
role: StringWithAutocomplete<"user" | "assistant" | "system">;
content: string;
images?: string[];
};
export interface OllamaGenerateRequestParams extends OllamaRequestParams {
prompt: string;
}
export interface OllamaChatRequestParams extends OllamaRequestParams {
messages: OllamaMessage[];
}
export type BaseOllamaGenerationChunk = {
model: string;
created_at: string;
done: boolean;
total_duration?: number;
load_duration?: number;
prompt_eval_count?: number;
prompt_eval_duration?: number;
eval_count?: number;
eval_duration?: number;
};
export type OllamaGenerationChunk = BaseOllamaGenerationChunk & {
response: string;
};
export type OllamaChatGenerationChunk = BaseOllamaGenerationChunk & {
message: OllamaMessage;
};
export type OllamaCallOptions = BaseLanguageModelCallOptions & {
headers?: Record<string, string>;
};
async function* createOllamaStream(
url: string,
params: OllamaRequestParams,
options: OllamaCallOptions
) {
let formattedUrl = url;
if (formattedUrl.startsWith("http://localhost:")) {
// Node 18 has issues with resolving "localhost"
// See https://github.com/node-fetch/node-fetch/issues/1624
formattedUrl = formattedUrl.replace(
"http://localhost:",
"http://127.0.0.1:"
);
}
const response = await fetch(formattedUrl, {
method: "POST",
body: JSON.stringify(params),
headers: {
"Content-Type": "application/json",
...options.headers,
},
signal: options.signal,
});
if (!response.ok) {
let error;
const responseText = await response.text();
try {
const json = JSON.parse(responseText);
error = new Error(
`Ollama call failed with status code ${response.status}: ${json.error}`
);
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} catch (e: any) {
error = new Error(
`Ollama call failed with status code ${response.status}: ${responseText}`
);
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(error as any).response = response;
throw error;
}
if (!response.body) {
throw new Error(
"Could not begin Ollama stream. Please check the given URL and try again."
);
}
const stream = IterableReadableStream.fromReadableStream(response.body);
const decoder = new TextDecoder();
let extra = "";
for await (const chunk of stream) {
const decoded = extra + decoder.decode(chunk);
const lines = decoded.split("\n");
extra = lines.pop() || "";
for (const line of lines) {
try {
yield JSON.parse(line);
} catch (e) {
console.warn(`Received a non-JSON parseable chunk: ${line}`);
}
}
}
}
export async function* createOllamaGenerateStream(
baseUrl: string,
params: OllamaGenerateRequestParams,
options: OllamaCallOptions
): AsyncGenerator<OllamaGenerationChunk> {
yield* createOllamaStream(`${baseUrl}/api/generate`, params, options);
}
export async function* createOllamaChatStream(
baseUrl: string,
params: OllamaChatRequestParams,
options: OllamaCallOptions
): AsyncGenerator<OllamaChatGenerationChunk> {
yield* createOllamaStream(`${baseUrl}/api/chat`, params, options);
}

View File

@ -0,0 +1,101 @@
import { Storage } from "@plasmohq/storage"
const storage = new Storage()
type ModelSettings = {
f16KV?: boolean
frequencyPenalty?: number
keepAlive?: string
logitsAll?: boolean
mirostat?: number
mirostatEta?: number
mirostatTau?: number
numBatch?: number
numCtx?: number
numGpu?: number
numGqa?: number
numKeep?: number
numPredict?: number
numThread?: number
penalizeNewline?: boolean
presencePenalty?: number
repeatLastN?: number
repeatPenalty?: number
ropeFrequencyBase?: number
ropeFrequencyScale?: number
temperature?: number
tfsZ?: number
topK?: number
topP?: number
typicalP?: number
useMLock?: boolean
useMMap?: boolean
vocabOnly?: boolean
}
const keys = [
"f16KV",
"frequencyPenalty",
"keepAlive",
"logitsAll",
"mirostat",
"mirostatEta",
"mirostatTau",
"numBatch",
"numCtx",
"numGpu",
"numGqa",
"numKeep",
"numPredict",
"numThread",
"penalizeNewline",
"presencePenalty",
"repeatLastN",
"repeatPenalty",
"ropeFrequencyBase",
"ropeFrequencyScale",
"temperature",
"tfsZ",
"topK",
"topP",
"typicalP",
"useMLock",
"useMMap",
"vocabOnly"
]
const getAllModelSettings = async () => {
try {
const settings: ModelSettings = {}
for (const key of keys) {
const value = await storage.get(key)
settings[key] = value
if (!value && key === "keepAlive") {
settings[key] = "5m"
}
}
return settings
} catch (error) {
console.error(error)
return {}
}
}
const setModelSetting = async (key: string,
value: string | number | boolean) => {
await storage.set(key, value)
}
export const getAllDefaultModelSettings = async (): Promise<ModelSettings> => {
const settings: ModelSettings = {}
for (const key of keys) {
const value = await storage.get(key)
settings[key] = value
if (!value && key === "keepAlive") {
settings[key] = "5m"
}
}
return settings
}
export { getAllModelSettings, setModelSetting }

136
src/store/model.tsx Normal file
View File

@ -0,0 +1,136 @@
import { create } from "zustand"
type CurrentChatModelSettings = {
f16KV?: boolean
frequencyPenalty?: number
keepAlive?: string
logitsAll?: boolean
mirostat?: number
mirostatEta?: number
mirostatTau?: number
numBatch?: number
numCtx?: number
numGpu?: number
numGqa?: number
numKeep?: number
numPredict?: number
numThread?: number
penalizeNewline?: boolean
presencePenalty?: number
repeatLastN?: number
repeatPenalty?: number
ropeFrequencyBase?: number
ropeFrequencyScale?: number
temperature?: number
tfsZ?: number
topK?: number
topP?: number
typicalP?: number
useMLock?: boolean
useMMap?: boolean
vocabOnly?: boolean
seed?: number
setF16KV?: (f16KV: boolean) => void
setFrequencyPenalty?: (frequencyPenalty: number) => void
setKeepAlive?: (keepAlive: string) => void
setLogitsAll?: (logitsAll: boolean) => void
setMirostat?: (mirostat: number) => void
setMirostatEta?: (mirostatEta: number) => void
setMirostatTau?: (mirostatTau: number) => void
setNumBatch?: (numBatch: number) => void
setNumCtx?: (numCtx: number) => void
setNumGpu?: (numGpu: number) => void
setNumGqa?: (numGqa: number) => void
setNumKeep?: (numKeep: number) => void
setNumPredict?: (numPredict: number) => void
setNumThread?: (numThread: number) => void
setPenalizeNewline?: (penalizeNewline: boolean) => void
setPresencePenalty?: (presencePenalty: number) => void
setRepeatLastN?: (repeatLastN: number) => void
setRepeatPenalty?: (repeatPenalty: number) => void
setRopeFrequencyBase?: (ropeFrequencyBase: number) => void
setRopeFrequencyScale?: (ropeFrequencyScale: number) => void
setTemperature?: (temperature: number) => void
setTfsZ?: (tfsZ: number) => void
setTopK?: (topK: number) => void
setTopP?: (topP: number) => void
setTypicalP?: (typicalP: number) => void
setUseMLock?: (useMLock: boolean) => void
setUseMMap?: (useMMap: boolean) => void
setVocabOnly?: (vocabOnly: boolean) => void
seetSeed?: (seed: number) => void
setX: (key: string, value: any) => void
reset: () => void
}
export const useStoreChatModelSettings = create<CurrentChatModelSettings>(
(set) => ({
setF16KV: (f16KV: boolean) => set({ f16KV }),
setFrequencyPenalty: (frequencyPenalty: number) =>
set({ frequencyPenalty }),
setKeepAlive: (keepAlive: string) => set({ keepAlive }),
setLogitsAll: (logitsAll: boolean) => set({ logitsAll }),
setMirostat: (mirostat: number) => set({ mirostat }),
setMirostatEta: (mirostatEta: number) => set({ mirostatEta }),
setMirostatTau: (mirostatTau: number) => set({ mirostatTau }),
setNumBatch: (numBatch: number) => set({ numBatch }),
setNumCtx: (numCtx: number) => set({ numCtx }),
setNumGpu: (numGpu: number) => set({ numGpu }),
setNumGqa: (numGqa: number) => set({ numGqa }),
setNumKeep: (numKeep: number) => set({ numKeep }),
setNumPredict: (numPredict: number) => set({ numPredict }),
setNumThread: (numThread: number) => set({ numThread }),
setPenalizeNewline: (penalizeNewline: boolean) => set({ penalizeNewline }),
setPresencePenalty: (presencePenalty: number) => set({ presencePenalty }),
setRepeatLastN: (repeatLastN: number) => set({ repeatLastN }),
setRepeatPenalty: (repeatPenalty: number) => set({ repeatPenalty }),
setRopeFrequencyBase: (ropeFrequencyBase: number) =>
set({ ropeFrequencyBase }),
setRopeFrequencyScale: (ropeFrequencyScale: number) =>
set({ ropeFrequencyScale }),
setTemperature: (temperature: number) => set({ temperature }),
setTfsZ: (tfsZ: number) => set({ tfsZ }),
setTopK: (topK: number) => set({ topK }),
setTopP: (topP: number) => set({ topP }),
setTypicalP: (typicalP: number) => set({ typicalP }),
setUseMLock: (useMLock: boolean) => set({ useMLock }),
setUseMMap: (useMMap: boolean) => set({ useMMap }),
setVocabOnly: (vocabOnly: boolean) => set({ vocabOnly }),
seetSeed: (seed: number) => set({ seed }),
setX: (key: string, value: any) => set({ [key]: value }),
reset: () =>
set({
f16KV: undefined,
frequencyPenalty: undefined,
keepAlive: undefined,
logitsAll: undefined,
mirostat: undefined,
mirostatEta: undefined,
mirostatTau: undefined,
numBatch: undefined,
numCtx: undefined,
numGpu: undefined,
numGqa: undefined,
numKeep: undefined,
numPredict: undefined,
numThread: undefined,
penalizeNewline: undefined,
presencePenalty: undefined,
repeatLastN: undefined,
repeatPenalty: undefined,
ropeFrequencyBase: undefined,
ropeFrequencyScale: undefined,
temperature: undefined,
tfsZ: undefined,
topK: undefined,
topP: undefined,
typicalP: undefined,
useMLock: undefined,
useMMap: undefined,
vocabOnly: undefined,
seed: undefined
})
})
)

View File

@ -48,7 +48,7 @@ export default defineConfig({
outDir: "build",
manifest: {
version: "1.1.8",
version: "1.1.9",
name:
process.env.TARGET === "firefox"
? "Page Assist - A Web UI for Local AI Models"