add embedding support
This commit is contained in:
parent
1300945b75
commit
ba071ffeb1
234
src/models/OAIEmbedding.ts
Normal file
234
src/models/OAIEmbedding.ts
Normal file
@ -0,0 +1,234 @@
|
||||
import { type ClientOptions, OpenAI as OpenAIClient } from "openai"
|
||||
import { Embeddings, type EmbeddingsParams } from "@langchain/core/embeddings"
|
||||
import { chunkArray } from "@langchain/core/utils/chunk_array"
|
||||
import { OpenAICoreRequestOptions, LegacyOpenAIInput } from "./types"
|
||||
import { wrapOpenAIClientError } from "./utils/openai"
|
||||
|
||||
/**
|
||||
* Interface for OpenAIEmbeddings parameters. Extends EmbeddingsParams and
|
||||
* defines additional parameters specific to the OpenAIEmbeddings class.
|
||||
*/
|
||||
export interface OpenAIEmbeddingsParams extends EmbeddingsParams {
|
||||
/**
|
||||
* Model name to use
|
||||
* Alias for `model`
|
||||
*/
|
||||
modelName: string
|
||||
/** Model name to use */
|
||||
model: string
|
||||
|
||||
/**
|
||||
* The number of dimensions the resulting output embeddings should have.
|
||||
* Only supported in `text-embedding-3` and later models.
|
||||
*/
|
||||
dimensions?: number
|
||||
|
||||
/**
|
||||
* Timeout to use when making requests to OpenAI.
|
||||
*/
|
||||
timeout?: number
|
||||
|
||||
/**
|
||||
* The maximum number of documents to embed in a single request. This is
|
||||
* limited by the OpenAI API to a maximum of 2048.
|
||||
*/
|
||||
batchSize?: number
|
||||
|
||||
/**
|
||||
* Whether to strip new lines from the input text. This is recommended by
|
||||
* OpenAI for older models, but may not be suitable for all use cases.
|
||||
* See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
|
||||
*/
|
||||
stripNewLines?: boolean
|
||||
|
||||
signal?: AbortSignal
|
||||
}
|
||||
|
||||
/**
|
||||
* Class for generating embeddings using the OpenAI API. Extends the
|
||||
* Embeddings class and implements OpenAIEmbeddingsParams and
|
||||
* AzureOpenAIInput.
|
||||
* @example
|
||||
* ```typescript
|
||||
* // Embed a query using OpenAIEmbeddings to generate embeddings for a given text
|
||||
* const model = new OpenAIEmbeddings();
|
||||
* const res = await model.embedQuery(
|
||||
* "What would be a good company name for a company that makes colorful socks?",
|
||||
* );
|
||||
* console.log({ res });
|
||||
*
|
||||
* ```
|
||||
*/
|
||||
export class OAIEmbedding
|
||||
extends Embeddings
|
||||
implements OpenAIEmbeddingsParams {
|
||||
modelName = "text-embedding-ada-002"
|
||||
|
||||
model = "text-embedding-ada-002"
|
||||
|
||||
batchSize = 512
|
||||
|
||||
// TODO: Update to `false` on next minor release (see: https://github.com/langchain-ai/langchainjs/pull/3612)
|
||||
stripNewLines = true
|
||||
|
||||
/**
|
||||
* The number of dimensions the resulting output embeddings should have.
|
||||
* Only supported in `text-embedding-3` and later models.
|
||||
*/
|
||||
dimensions?: number
|
||||
|
||||
timeout?: number
|
||||
|
||||
azureOpenAIApiVersion?: string
|
||||
|
||||
azureOpenAIApiKey?: string
|
||||
|
||||
azureADTokenProvider?: () => Promise<string>
|
||||
|
||||
azureOpenAIApiInstanceName?: string
|
||||
|
||||
azureOpenAIApiDeploymentName?: string
|
||||
|
||||
azureOpenAIBasePath?: string
|
||||
|
||||
organization?: string
|
||||
|
||||
protected client: OpenAIClient
|
||||
|
||||
protected clientConfig: ClientOptions
|
||||
signal?: AbortSignal
|
||||
|
||||
constructor(
|
||||
fields?: Partial<OpenAIEmbeddingsParams> & {
|
||||
verbose?: boolean
|
||||
/**
|
||||
* The OpenAI API key to use.
|
||||
* Alias for `apiKey`.
|
||||
*/
|
||||
openAIApiKey?: string
|
||||
/** The OpenAI API key to use. */
|
||||
apiKey?: string
|
||||
configuration?: ClientOptions
|
||||
},
|
||||
configuration?: ClientOptions & LegacyOpenAIInput
|
||||
) {
|
||||
const fieldsWithDefaults = { maxConcurrency: 2, ...fields }
|
||||
|
||||
super(fieldsWithDefaults)
|
||||
|
||||
let apiKey = fieldsWithDefaults?.apiKey ?? fieldsWithDefaults?.openAIApiKey
|
||||
|
||||
this.modelName =
|
||||
fieldsWithDefaults?.model ?? fieldsWithDefaults?.modelName ?? this.model
|
||||
this.model = this.modelName
|
||||
this.batchSize = fieldsWithDefaults?.batchSize
|
||||
this.stripNewLines = fieldsWithDefaults?.stripNewLines ?? this.stripNewLines
|
||||
this.timeout = fieldsWithDefaults?.timeout
|
||||
this.dimensions = fieldsWithDefaults?.dimensions
|
||||
|
||||
if (fields.signal) {
|
||||
this.signal = fields.signal
|
||||
}
|
||||
|
||||
|
||||
this.clientConfig = {
|
||||
apiKey,
|
||||
organization: this.organization,
|
||||
baseURL: configuration?.basePath,
|
||||
dangerouslyAllowBrowser: true,
|
||||
defaultHeaders: configuration?.baseOptions?.headers,
|
||||
defaultQuery: configuration?.baseOptions?.params,
|
||||
...configuration,
|
||||
...fields?.configuration
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Method to generate embeddings for an array of documents. Splits the
|
||||
* documents into batches and makes requests to the OpenAI API to generate
|
||||
* embeddings.
|
||||
* @param texts Array of documents to generate embeddings for.
|
||||
* @returns Promise that resolves to a 2D array of embeddings for each document.
|
||||
*/
|
||||
async embedDocuments(texts: string[]): Promise<number[][]> {
|
||||
const batches = chunkArray(
|
||||
this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts,
|
||||
this.batchSize
|
||||
)
|
||||
|
||||
const batchRequests = batches.map((batch) => {
|
||||
const params: OpenAIClient.EmbeddingCreateParams = {
|
||||
model: this.model,
|
||||
input: batch
|
||||
}
|
||||
if (this.dimensions) {
|
||||
params.dimensions = this.dimensions
|
||||
}
|
||||
return this.embeddingWithRetry(params)
|
||||
})
|
||||
const batchResponses = await Promise.all(batchRequests)
|
||||
|
||||
const embeddings: number[][] = []
|
||||
for (let i = 0; i < batchResponses.length; i += 1) {
|
||||
const batch = batches[i]
|
||||
const { data: batchResponse } = batchResponses[i]
|
||||
for (let j = 0; j < batch.length; j += 1) {
|
||||
embeddings.push(batchResponse[j].embedding)
|
||||
}
|
||||
}
|
||||
return embeddings
|
||||
}
|
||||
|
||||
/**
|
||||
* Method to generate an embedding for a single document. Calls the
|
||||
* embeddingWithRetry method with the document as the input.
|
||||
* @param text Document to generate an embedding for.
|
||||
* @returns Promise that resolves to an embedding for the document.
|
||||
*/
|
||||
async embedQuery(text: string): Promise<number[]> {
|
||||
const params: OpenAIClient.EmbeddingCreateParams = {
|
||||
model: this.model,
|
||||
input: this.stripNewLines ? text.replace(/\n/g, " ") : text
|
||||
}
|
||||
if (this.dimensions) {
|
||||
params.dimensions = this.dimensions
|
||||
}
|
||||
const { data } = await this.embeddingWithRetry(params)
|
||||
return data[0].embedding
|
||||
}
|
||||
|
||||
/**
|
||||
* Private method to make a request to the OpenAI API to generate
|
||||
* embeddings. Handles the retry logic and returns the response from the
|
||||
* API.
|
||||
* @param request Request to send to the OpenAI API.
|
||||
* @returns Promise that resolves to the response from the API.
|
||||
*/
|
||||
protected async embeddingWithRetry(
|
||||
request: OpenAIClient.EmbeddingCreateParams
|
||||
) {
|
||||
const requestOptions: OpenAICoreRequestOptions = {}
|
||||
if (this.azureOpenAIApiKey) {
|
||||
requestOptions.headers = {
|
||||
"api-key": this.azureOpenAIApiKey,
|
||||
...requestOptions.headers
|
||||
}
|
||||
requestOptions.query = {
|
||||
"api-version": this.azureOpenAIApiVersion,
|
||||
...requestOptions.query
|
||||
}
|
||||
}
|
||||
return this.caller.call(async () => {
|
||||
try {
|
||||
const res = await this.client.embeddings.create(request, {
|
||||
...requestOptions,
|
||||
signal: this.signal
|
||||
})
|
||||
return res
|
||||
} catch (e) {
|
||||
const error = wrapOpenAIClientError(e)
|
||||
throw error
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
26
src/models/types.ts
Normal file
26
src/models/types.ts
Normal file
@ -0,0 +1,26 @@
|
||||
export type OpenAICoreRequestOptions<
|
||||
Req extends object = Record<string, unknown>
|
||||
> = {
|
||||
path?: string;
|
||||
query?: Req | undefined;
|
||||
body?: Req | undefined;
|
||||
headers?: Record<string, string | null | undefined> | undefined;
|
||||
|
||||
maxRetries?: number;
|
||||
stream?: boolean | undefined;
|
||||
timeout?: number;
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
httpAgent?: any;
|
||||
signal?: AbortSignal | undefined | null;
|
||||
idempotencyKey?: string;
|
||||
};
|
||||
|
||||
export interface LegacyOpenAIInput {
|
||||
/** @deprecated Use baseURL instead */
|
||||
basePath?: string;
|
||||
/** @deprecated Use defaultHeaders and defaultQuery instead */
|
||||
baseOptions?: {
|
||||
headers?: Record<string, string>;
|
||||
params?: Record<string, string>;
|
||||
};
|
||||
}
|
70
src/models/utils/openai.ts
Normal file
70
src/models/utils/openai.ts
Normal file
@ -0,0 +1,70 @@
|
||||
import {
|
||||
APIConnectionTimeoutError,
|
||||
APIUserAbortError,
|
||||
OpenAI as OpenAIClient,
|
||||
} from "openai";
|
||||
import { zodToJsonSchema } from "zod-to-json-schema";
|
||||
import type { StructuredToolInterface } from "@langchain/core/tools";
|
||||
import {
|
||||
convertToOpenAIFunction,
|
||||
convertToOpenAITool,
|
||||
} from "@langchain/core/utils/function_calling";
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
export function wrapOpenAIClientError(e: any) {
|
||||
let error;
|
||||
if (e.constructor.name === APIConnectionTimeoutError.name) {
|
||||
error = new Error(e.message);
|
||||
error.name = "TimeoutError";
|
||||
} else if (e.constructor.name === APIUserAbortError.name) {
|
||||
error = new Error(e.message);
|
||||
error.name = "AbortError";
|
||||
} else {
|
||||
error = e;
|
||||
}
|
||||
return error;
|
||||
}
|
||||
|
||||
export {
|
||||
convertToOpenAIFunction as formatToOpenAIFunction,
|
||||
convertToOpenAITool as formatToOpenAITool,
|
||||
};
|
||||
|
||||
export function formatToOpenAIAssistantTool(tool: StructuredToolInterface) {
|
||||
return {
|
||||
type: "function",
|
||||
function: {
|
||||
name: tool.name,
|
||||
description: tool.description,
|
||||
parameters: zodToJsonSchema(tool.schema),
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
export type OpenAIToolChoice =
|
||||
| OpenAIClient.ChatCompletionToolChoiceOption
|
||||
| "any"
|
||||
| string;
|
||||
|
||||
export function formatToOpenAIToolChoice(
|
||||
toolChoice?: OpenAIToolChoice
|
||||
): OpenAIClient.ChatCompletionToolChoiceOption | undefined {
|
||||
if (!toolChoice) {
|
||||
return undefined;
|
||||
} else if (toolChoice === "any" || toolChoice === "required") {
|
||||
return "required";
|
||||
} else if (toolChoice === "auto") {
|
||||
return "auto";
|
||||
} else if (toolChoice === "none") {
|
||||
return "none";
|
||||
} else if (typeof toolChoice === "string") {
|
||||
return {
|
||||
type: "function",
|
||||
function: {
|
||||
name: toolChoice,
|
||||
},
|
||||
};
|
||||
} else {
|
||||
return toolChoice;
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user