n4ze3m 768ff2e555 feat: Improve model selection and embedding
Refactor embedding models and their handling to improve performance and simplify the process.
Add a new model selection mechanism,  and enhance the UI for model selection, offering clearer and more user-friendly options for embedding models.
Refactor embeddings to use a common model for page assist and RAG, further improving performance and streamlining the workflow.
2024-10-12 23:32:00 +05:30

116 lines
3.2 KiB
TypeScript

import { pageAssistEmbeddingModel } from "@/models/embedding"
import {
getIsSimpleInternetSearch,
totalSearchResults
} from "@/services/search"
import type { Document } from "@langchain/core/documents"
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
import { MemoryVectorStore } from "langchain/vectorstores/memory"
import { cleanUrl } from "~/libs/clean-url"
import { urlRewriteRuntime } from "~/libs/runtime"
import { PageAssistHtmlLoader } from "~/loader/html"
import {
defaultEmbeddingChunkOverlap,
defaultEmbeddingChunkSize,
defaultEmbeddingModelForRag,
getOllamaURL
} from "~/services/ollama"
export const localGoogleSearch = async (query: string) => {
await urlRewriteRuntime(
cleanUrl("https://www.google.com/search?hl=en&q=" + query),
"google"
)
const abortController = new AbortController()
setTimeout(() => abortController.abort(), 10000)
const htmlString = await fetch(
"https://www.google.com/search?hl=en&q=" + query,
{
signal: abortController.signal
}
)
.then((response) => response.text())
.catch()
const parser = new DOMParser()
const doc = parser.parseFromString(htmlString, "text/html")
const searchResults = Array.from(doc.querySelectorAll("div.g")).map(
(result) => {
const title = result.querySelector("h3")?.textContent
const link = result.querySelector("a")?.getAttribute("href")
const content = Array.from(result.querySelectorAll("span"))
.map((span) => span.textContent)
.join(" ")
return { title, link, content }
}
)
return searchResults
}
export const webGoogleSearch = async (query: string) => {
const results = await localGoogleSearch(query)
const TOTAL_SEARCH_RESULTS = await totalSearchResults()
const searchResults = results.slice(0, TOTAL_SEARCH_RESULTS)
const isSimpleMode = await getIsSimpleInternetSearch()
if (isSimpleMode) {
await getOllamaURL()
return searchResults.map((result) => {
return {
url: result.link,
content: result.content
}
})
}
const docs: Document<Record<string, any>>[] = []
for (const result of searchResults) {
const loader = new PageAssistHtmlLoader({
html: "",
url: result.link
})
const documents = await loader.loadByURL()
documents.forEach((doc) => {
docs.push(doc)
})
}
const ollamaUrl = await getOllamaURL()
const embeddingModle = await defaultEmbeddingModelForRag()
const ollamaEmbedding = await pageAssistEmbeddingModel({
model: embeddingModle || "",
baseUrl: cleanUrl(ollamaUrl)
})
const chunkSize = await defaultEmbeddingChunkSize()
const chunkOverlap = await defaultEmbeddingChunkOverlap()
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize,
chunkOverlap
})
const chunks = await textSplitter.splitDocuments(docs)
const store = new MemoryVectorStore(ollamaEmbedding)
await store.addDocuments(chunks)
const resultsWithEmbeddings = await store.similaritySearch(query, 3)
const searchResult = resultsWithEmbeddings.map((result) => {
return {
url: result.metadata.url,
content: result.pageContent
}
})
return searchResult
}