Refactor embedding models and their handling to improve performance and simplify the process. Add a new model selection mechanism, and enhance the UI for model selection, offering clearer and more user-friendly options for embedding models. Refactor embeddings to use a common model for page assist and RAG, further improving performance and streamlining the workflow.
116 lines
3.2 KiB
TypeScript
116 lines
3.2 KiB
TypeScript
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
|
import {
|
|
getIsSimpleInternetSearch,
|
|
totalSearchResults
|
|
} from "@/services/search"
|
|
import type { Document } from "@langchain/core/documents"
|
|
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
|
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
|
import { cleanUrl } from "~/libs/clean-url"
|
|
import { urlRewriteRuntime } from "~/libs/runtime"
|
|
import { PageAssistHtmlLoader } from "~/loader/html"
|
|
import {
|
|
defaultEmbeddingChunkOverlap,
|
|
defaultEmbeddingChunkSize,
|
|
defaultEmbeddingModelForRag,
|
|
getOllamaURL
|
|
} from "~/services/ollama"
|
|
|
|
|
|
export const localGoogleSearch = async (query: string) => {
|
|
await urlRewriteRuntime(
|
|
cleanUrl("https://www.google.com/search?hl=en&q=" + query),
|
|
"google"
|
|
)
|
|
const abortController = new AbortController()
|
|
setTimeout(() => abortController.abort(), 10000)
|
|
|
|
const htmlString = await fetch(
|
|
"https://www.google.com/search?hl=en&q=" + query,
|
|
{
|
|
signal: abortController.signal
|
|
}
|
|
)
|
|
.then((response) => response.text())
|
|
.catch()
|
|
|
|
const parser = new DOMParser()
|
|
|
|
const doc = parser.parseFromString(htmlString, "text/html")
|
|
|
|
const searchResults = Array.from(doc.querySelectorAll("div.g")).map(
|
|
(result) => {
|
|
const title = result.querySelector("h3")?.textContent
|
|
const link = result.querySelector("a")?.getAttribute("href")
|
|
const content = Array.from(result.querySelectorAll("span"))
|
|
.map((span) => span.textContent)
|
|
.join(" ")
|
|
return { title, link, content }
|
|
}
|
|
)
|
|
return searchResults
|
|
}
|
|
|
|
export const webGoogleSearch = async (query: string) => {
|
|
const results = await localGoogleSearch(query)
|
|
const TOTAL_SEARCH_RESULTS = await totalSearchResults()
|
|
const searchResults = results.slice(0, TOTAL_SEARCH_RESULTS)
|
|
|
|
const isSimpleMode = await getIsSimpleInternetSearch()
|
|
|
|
if (isSimpleMode) {
|
|
await getOllamaURL()
|
|
return searchResults.map((result) => {
|
|
return {
|
|
url: result.link,
|
|
content: result.content
|
|
}
|
|
})
|
|
}
|
|
|
|
const docs: Document<Record<string, any>>[] = []
|
|
for (const result of searchResults) {
|
|
const loader = new PageAssistHtmlLoader({
|
|
html: "",
|
|
url: result.link
|
|
})
|
|
|
|
const documents = await loader.loadByURL()
|
|
|
|
documents.forEach((doc) => {
|
|
docs.push(doc)
|
|
})
|
|
}
|
|
const ollamaUrl = await getOllamaURL()
|
|
|
|
const embeddingModle = await defaultEmbeddingModelForRag()
|
|
const ollamaEmbedding = await pageAssistEmbeddingModel({
|
|
model: embeddingModle || "",
|
|
baseUrl: cleanUrl(ollamaUrl)
|
|
})
|
|
|
|
const chunkSize = await defaultEmbeddingChunkSize()
|
|
const chunkOverlap = await defaultEmbeddingChunkOverlap()
|
|
const textSplitter = new RecursiveCharacterTextSplitter({
|
|
chunkSize,
|
|
chunkOverlap
|
|
})
|
|
|
|
const chunks = await textSplitter.splitDocuments(docs)
|
|
|
|
const store = new MemoryVectorStore(ollamaEmbedding)
|
|
|
|
await store.addDocuments(chunks)
|
|
|
|
const resultsWithEmbeddings = await store.similaritySearch(query, 3)
|
|
|
|
const searchResult = resultsWithEmbeddings.map((result) => {
|
|
return {
|
|
url: result.metadata.url,
|
|
content: result.pageContent
|
|
}
|
|
})
|
|
|
|
return searchResult
|
|
}
|