page-assist/src/hooks/useMessage.tsx

575 lines
14 KiB
TypeScript

import React from "react"
import { cleanUrl } from "~/libs/clean-url"
import {
defaultEmbeddingModelForRag,
getOllamaURL,
promptForRag,
systemPromptForNonRag
} from "~/services/ollama"
import { type Message } from "~/store/option"
import { useStoreMessage } from "~/store"
import { ChatOllama } from "@langchain/community/chat_models/ollama"
import { HumanMessage, SystemMessage } from "@langchain/core/messages"
import { getDataFromCurrentTab } from "~/libs/get-html"
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
import { MemoryVectorStore } from "langchain/vectorstores/memory"
import { memoryEmbedding } from "@/utils/memory-embeddings"
import { ChatHistory } from "@/store/option"
import { generateID } from "@/db"
import { saveMessageOnError, saveMessageOnSuccess } from "./chat-helper"
import { notification } from "antd"
import { useTranslation } from "react-i18next"
import { usePageAssist } from "@/context"
import { formatDocs } from "@/chain/chat-with-x"
import { OllamaEmbeddingsPageAssist } from "@/models/OllamaEmbedding"
export const useMessage = () => {
const {
controller: abortController,
setController: setAbortController,
messages,
setMessages,
embeddingController,
setEmbeddingController
} = usePageAssist()
const { t } = useTranslation("option")
const {
history,
setHistory,
setStreaming,
streaming,
setIsFirstMessage,
historyId,
setHistoryId,
isLoading,
setIsLoading,
isProcessing,
setIsProcessing,
selectedModel,
setSelectedModel,
chatMode,
setChatMode,
setIsEmbedding,
isEmbedding,
speechToTextLanguage,
setSpeechToTextLanguage,
currentURL,
setCurrentURL
} = useStoreMessage()
const [keepTrackOfEmbedding, setKeepTrackOfEmbedding] = React.useState<{
[key: string]: MemoryVectorStore
}>({})
const clearChat = () => {
stopStreamingRequest()
setMessages([])
setHistory([])
setHistoryId(null)
setIsFirstMessage(true)
setIsLoading(false)
setIsProcessing(false)
setStreaming(false)
}
const chatWithWebsiteMode = async (
message: string,
image: string,
isRegenerate: boolean,
messages: Message[],
history: ChatHistory,
signal: AbortSignal,
embeddingSignal: AbortSignal
) => {
setStreaming(true)
const url = await getOllamaURL()
const ollama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
})
let newMessage: Message[] = []
let generateMessageId = generateID()
if (!isRegenerate) {
newMessage = [
...messages,
{
isBot: false,
name: "You",
message,
sources: [],
images: []
},
{
isBot: true,
name: selectedModel,
message: "▋",
sources: [],
id: generateMessageId
}
]
} else {
newMessage = [
...messages,
{
isBot: true,
name: selectedModel,
message: "▋",
sources: [],
id: generateMessageId
}
]
}
setMessages(newMessage)
let fullText = ""
let contentToSave = ""
let isAlreadyExistEmbedding: MemoryVectorStore
let embedURL: string, embedHTML: string, embedType: string
let embedPDF: { content: string; page: number }[] = []
if (messages.length === 0) {
const { content: html, url, type, pdf } = await getDataFromCurrentTab()
embedHTML = html
embedURL = url
embedType = type
embedPDF = pdf
setCurrentURL(url)
isAlreadyExistEmbedding = keepTrackOfEmbedding[currentURL]
} else {
isAlreadyExistEmbedding = keepTrackOfEmbedding[currentURL]
embedURL = currentURL
}
setMessages(newMessage)
const ollamaUrl = await getOllamaURL()
const embeddingModle = await defaultEmbeddingModelForRag()
const ollamaEmbedding = new OllamaEmbeddingsPageAssist({
model: embeddingModle || selectedModel,
baseUrl: cleanUrl(ollamaUrl),
signal: embeddingSignal
})
let vectorstore: MemoryVectorStore
try {
if (isAlreadyExistEmbedding) {
vectorstore = isAlreadyExistEmbedding
} else {
vectorstore = await memoryEmbedding({
html: embedHTML,
keepTrackOfEmbedding: keepTrackOfEmbedding,
ollamaEmbedding: ollamaEmbedding,
pdf: embedPDF,
setIsEmbedding: setIsEmbedding,
setKeepTrackOfEmbedding: setKeepTrackOfEmbedding,
type: embedType,
url: embedURL
})
}
let query = message
const { ragPrompt: systemPrompt, ragQuestionPrompt: questionPrompt } =
await promptForRag()
if (newMessage.length > 2) {
const lastTenMessages = newMessage.slice(-10)
lastTenMessages.pop()
const chat_history = lastTenMessages
.map((message) => {
return `${message.isBot ? "Assistant: " : "Human: "}${message.message}`
})
.join("\n")
const promptForQuestion = questionPrompt
.replaceAll("{chat_history}", chat_history)
.replaceAll("{question}", message)
const questionOllama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
})
const response = await questionOllama.invoke(promptForQuestion)
query = response.content.toString()
}
const docs = await vectorstore.similaritySearch(query, 4)
const context = formatDocs(docs)
const source = docs.map((doc) => {
return {
...doc,
name: doc?.metadata?.source || "untitled",
type: doc?.metadata?.type || "unknown",
mode: "chat",
url: ""
}
})
message = message.trim().replaceAll("\n", " ")
let humanMessage = new HumanMessage({
content: [
{
text: systemPrompt
.replace("{context}", context)
.replace("{question}", message),
type: "text"
}
]
})
const applicationChatHistory = generateHistory(history)
const chunks = await ollama.stream(
[...applicationChatHistory, humanMessage],
{
signal: signal
}
)
let count = 0
for await (const chunk of chunks) {
contentToSave += chunk.content
fullText += chunk.content
if (count === 0) {
setIsProcessing(true)
}
setMessages((prev) => {
return prev.map((message) => {
if (message.id === generateMessageId) {
return {
...message,
message: fullText.slice(0, -1) + "▋"
}
}
return message
})
})
count++
}
// update the message with the full text
setMessages((prev) => {
return prev.map((message) => {
if (message.id === generateMessageId) {
return {
...message,
message: fullText,
sources: source
}
}
return message
})
})
setHistory([
...history,
{
role: "user",
content: message,
image
},
{
role: "assistant",
content: fullText
}
])
await saveMessageOnSuccess({
historyId,
setHistoryId,
isRegenerate,
selectedModel: selectedModel,
message,
image,
fullText,
source
})
setIsProcessing(false)
setStreaming(false)
} catch (e) {
const errorSave = await saveMessageOnError({
e,
botMessage: fullText,
history,
historyId,
image,
selectedModel,
setHistory,
setHistoryId,
userMessage: message,
isRegenerating: isRegenerate
})
if (!errorSave) {
notification.error({
message: t("error"),
description: e?.message || t("somethingWentWrong")
})
}
setIsProcessing(false)
setStreaming(false)
setIsProcessing(false)
setStreaming(false)
setIsEmbedding(false)
} finally {
setAbortController(null)
setEmbeddingController(null)
}
}
const normalChatMode = async (
message: string,
image: string,
isRegenerate: boolean,
messages: Message[],
history: ChatHistory,
signal: AbortSignal
) => {
setStreaming(true)
const url = await getOllamaURL()
if (image.length > 0) {
image = `data:image/jpeg;base64,${image.split(",")[1]}`
}
const ollama = new ChatOllama({
model: selectedModel!,
baseUrl: cleanUrl(url)
})
let newMessage: Message[] = []
let generateMessageId = generateID()
if (!isRegenerate) {
newMessage = [
...messages,
{
isBot: false,
name: "You",
message,
sources: [],
images: [image]
},
{
isBot: true,
name: selectedModel,
message: "▋",
sources: [],
id: generateMessageId
}
]
} else {
newMessage = [
...messages,
{
isBot: true,
name: selectedModel,
message: "▋",
sources: [],
id: generateMessageId
}
]
}
setMessages(newMessage)
let fullText = ""
let contentToSave = ""
try {
const prompt = await systemPromptForNonRag()
message = message.trim().replaceAll("\n", " ")
let humanMessage = new HumanMessage({
content: [
{
text: message,
type: "text"
}
]
})
if (image.length > 0) {
humanMessage = new HumanMessage({
content: [
{
text: message,
type: "text"
},
{
image_url: image,
type: "image_url"
}
]
})
}
const applicationChatHistory = generateHistory(history)
if (prompt) {
applicationChatHistory.unshift(
new SystemMessage({
content: [
{
text: prompt,
type: "text"
}
]
})
)
}
const chunks = await ollama.stream(
[...applicationChatHistory, humanMessage],
{
signal: signal
}
)
let count = 0
for await (const chunk of chunks) {
contentToSave += chunk.content
fullText += chunk.content
if (count === 0) {
setIsProcessing(true)
}
setMessages((prev) => {
return prev.map((message) => {
if (message.id === generateMessageId) {
return {
...message,
message: fullText.slice(0, -1) + "▋"
}
}
return message
})
})
count++
}
setMessages((prev) => {
return prev.map((message) => {
if (message.id === generateMessageId) {
return {
...message,
message: fullText.slice(0, -1)
}
}
return message
})
})
setHistory([
...history,
{
role: "user",
content: message,
image
},
{
role: "assistant",
content: fullText
}
])
await saveMessageOnSuccess({
historyId,
setHistoryId,
isRegenerate,
selectedModel: selectedModel,
message,
image,
fullText,
source: []
})
setIsProcessing(false)
setStreaming(false)
setIsProcessing(false)
setStreaming(false)
} catch (e) {
const errorSave = await saveMessageOnError({
e,
botMessage: fullText,
history,
historyId,
image,
selectedModel,
setHistory,
setHistoryId,
userMessage: message,
isRegenerating: isRegenerate
})
if (!errorSave) {
notification.error({
message: t("error"),
description: e?.message || t("somethingWentWrong")
})
}
setIsProcessing(false)
setStreaming(false)
} finally {
setAbortController(null)
}
}
const onSubmit = async ({
message,
image
}: {
message: string
image: string
}) => {
const newController = new AbortController()
let signal = newController.signal
setAbortController(newController)
if (chatMode === "normal") {
await normalChatMode(message, image, false, messages, history, signal)
} else {
const newEmbeddingController = new AbortController()
let embeddingSignal = newEmbeddingController.signal
setEmbeddingController(newEmbeddingController)
await chatWithWebsiteMode(
message,
image,
false,
messages,
history,
signal,
embeddingSignal
)
}
}
const stopStreamingRequest = () => {
if (isEmbedding) {
if (embeddingController) {
embeddingController.abort()
setEmbeddingController(null)
}
}
if (abortController) {
abortController.abort()
setAbortController(null)
}
}
return {
messages,
setMessages,
onSubmit,
setStreaming,
streaming,
setHistory,
historyId,
setHistoryId,
setIsFirstMessage,
isLoading,
setIsLoading,
isProcessing,
stopStreamingRequest,
clearChat,
selectedModel,
setSelectedModel,
chatMode,
setChatMode,
isEmbedding,
speechToTextLanguage,
setSpeechToTextLanguage
}
}