feat: Improve model selection and embedding
Refactor embedding models and their handling to improve performance and simplify the process. Add a new model selection mechanism, and enhance the UI for model selection, offering clearer and more user-friendly options for embedding models. Refactor embeddings to use a common model for page assist and RAG, further improving performance and streamlining the workflow.
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import { cleanUrl } from "@/libs/clean-url"
|
||||
import { urlRewriteRuntime } from "@/libs/runtime"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
@@ -11,7 +12,7 @@ import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
|
||||
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import * as cheerio from "cheerio"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
@@ -81,7 +82,7 @@ export const webBraveSearch = async (query: string) => {
|
||||
const ollamaUrl = await getOllamaURL()
|
||||
|
||||
const embeddingModle = await defaultEmbeddingModelForRag()
|
||||
const ollamaEmbedding = new OllamaEmbeddings({
|
||||
const ollamaEmbedding = await pageAssistEmbeddingModel({
|
||||
model: embeddingModle || "",
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import { cleanUrl } from "@/libs/clean-url"
|
||||
import { urlRewriteRuntime } from "@/libs/runtime"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
@@ -11,7 +12,6 @@ import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import * as cheerio from "cheerio"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
@@ -85,7 +85,7 @@ export const webDuckDuckGoSearch = async (query: string) => {
|
||||
const ollamaUrl = await getOllamaURL()
|
||||
|
||||
const embeddingModle = await defaultEmbeddingModelForRag()
|
||||
const ollamaEmbedding = new OllamaEmbeddings({
|
||||
const ollamaEmbedding = await pageAssistEmbeddingModel({
|
||||
model: embeddingModle || "",
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
@@ -84,7 +84,7 @@ export const webGoogleSearch = async (query: string) => {
|
||||
const ollamaUrl = await getOllamaURL()
|
||||
|
||||
const embeddingModle = await defaultEmbeddingModelForRag()
|
||||
const ollamaEmbedding = new OllamaEmbeddings({
|
||||
const ollamaEmbedding = await pageAssistEmbeddingModel({
|
||||
model: embeddingModle || "",
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import { cleanUrl } from "@/libs/clean-url"
|
||||
import { urlRewriteRuntime } from "@/libs/runtime"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import {
|
||||
defaultEmbeddingChunkOverlap,
|
||||
defaultEmbeddingChunkSize,
|
||||
@@ -11,7 +12,6 @@ import {
|
||||
getIsSimpleInternetSearch,
|
||||
totalSearchResults
|
||||
} from "@/services/search"
|
||||
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
|
||||
import type { Document } from "@langchain/core/documents"
|
||||
import * as cheerio from "cheerio"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
@@ -99,7 +99,7 @@ export const webSogouSearch = async (query: string) => {
|
||||
const ollamaUrl = await getOllamaURL()
|
||||
|
||||
const embeddingModle = await defaultEmbeddingModelForRag()
|
||||
const ollamaEmbedding = new OllamaEmbeddings({
|
||||
const ollamaEmbedding = await pageAssistEmbeddingModel({
|
||||
model: embeddingModle || "",
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { cleanUrl } from "@/libs/clean-url"
|
||||
import { PageAssistHtmlLoader } from "@/loader/html"
|
||||
import { pageAssistEmbeddingModel } from "@/models/embedding"
|
||||
import { defaultEmbeddingChunkOverlap, defaultEmbeddingChunkSize, defaultEmbeddingModelForRag, getOllamaURL } from "@/services/ollama"
|
||||
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"
|
||||
import { MemoryVectorStore } from "langchain/vectorstores/memory"
|
||||
|
||||
@@ -15,7 +15,7 @@ export const processSingleWebsite = async (url: string, query: string) => {
|
||||
const ollamaUrl = await getOllamaURL()
|
||||
|
||||
const embeddingModle = await defaultEmbeddingModelForRag()
|
||||
const ollamaEmbedding = new OllamaEmbeddings({
|
||||
const ollamaEmbedding = await pageAssistEmbeddingModel({
|
||||
model: embeddingModle || "",
|
||||
baseUrl: cleanUrl(ollamaUrl)
|
||||
})
|
||||
|
||||
Reference in New Issue
Block a user